Linear transformations

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation with matrix A.
Vocabulary relating to T :

- The range $\operatorname{ran}(T)$ is the set of outputs of T.
- The kernel $\operatorname{ker}(T)$ is the inverse image $T^{-1}(\overrightarrow{0})$ (the set of input vectors \vec{x} for which $T(\vec{x})=\overrightarrow{0}$).
- T is onto or surjective if $\operatorname{ran}(T)=\mathbb{R}^{m}$.
- T is one-to-one or injective if different inputs $\vec{x}_{1} \neq \vec{x}_{2}$ produce different outputs $T\left(\vec{x}_{1}\right) \neq T\left(\vec{x}_{2}\right)$.

Vocabulary relating to A :

- The column space $\operatorname{col}(A)$ is the span of the columns of A.
- The null space null (A) is the set of solutions of $A \vec{x}=\overrightarrow{0}$.

Theorem

T is injective if and only if $\operatorname{ker}(T)=\{\overrightarrow{0}\}$.

Theorem

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation given by $T(\vec{x})=A \vec{x}$.
(1) T is surjective if and only if the columns of A span \mathbb{R}^{m}.
(2) T is injective if and only if the columns of A are linearly independent.

Theorem

If $m=n$, T is injective if and only if T is surjective.

Theorem

n vectors in \mathbb{R}^{n} are linearly independent if and only if they span \mathbb{R}^{n}.
A basis of \mathbb{R}^{n} is a set of vectors that are linearly independent and span \mathbb{R}^{n}.

Amazing Awesome Unifying Invertible Matrix Theorem

Theorem. Suppose A is an $n \times n$ matrix. The following are equivalent.
(1) A is invertible.
$2 A$ is the product of elementary matrices.
(3) The reduced row echelon form of A is I_{n}.
(4) A has n pivot variables in its reduced row echelon form. (i.e. $\operatorname{rank}(A)=n$).
(5) $A \vec{x}=\overrightarrow{0}$ has only the solution $\vec{x}=\overrightarrow{0}$. (i.e. null $(A)=\overrightarrow{0}$.)
(6) $A \vec{x}=\vec{b}$ has at least one solution for all \vec{b} in \mathbb{R}^{n}. (i.e. $A \vec{x}=\vec{b}$ is consistent for all \vec{b} in \mathbb{R}^{n}.)
(7) $A \vec{x}=\vec{b}$ has at most one solution for all \vec{b} in \mathbb{R}^{n}.
(8) $A \vec{x}=\vec{b}$ has exactly one solution for all \vec{b} in \mathbb{R}^{n}.
(9) There is an $n \times n$ matrix C such that $C A=I_{n}$.
(10) There is an $n \times n$ matrix D such that $A D=I_{n}$.
(11) A^{T} is invertible.
$(12$ The columns of A are linearly independent.
(13) The columns of A span \mathbb{R}^{n}. (i.e. $\operatorname{col}(A)=\mathbb{R}^{n}$.)
(14) The columns of A form a basis of \mathbb{R}^{n}.
15 The linear transformation $T(\vec{x})=A \vec{x}$ is injective.
16 The linear transformation $T(\vec{x})=A \vec{x}$ has kernel $\{\overrightarrow{0}\}$ (i.e. $T^{-1}(\overrightarrow{0})=\{\overrightarrow{0}\}$).
17 The linear transformation $T(\vec{x})=A \vec{x}$ is surjective. (i.e. $\operatorname{ran}(T)=\mathbb{R}^{n}$.)
18 The linear transformation $T(\vec{x})=A \vec{x}$ is a bijection (both injective and surjective).
(19) The linear transformation $T(\vec{x})=A \vec{x}$ is invertible.

20 The rows of A are linearly independent.
(21) The rows of A span \mathbb{R}^{n}.
(22) The rows of A form a basis of \mathbb{R}^{n}.

The connection between linear transformations and matrix algebra

> Theorem (Linear transformation composition
> $\quad=$ matrix multiplication)
> If $T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $T_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ are linear transformations given by $T_{1}(\vec{x})=A \vec{x}$ and $T_{2}(\vec{x})=B \vec{x}$ then $T_{2} \circ T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is a linear transformation given by $T_{2} \circ T_{1}(\vec{x})=B A \vec{x}$.

Theorem (Linear transformation inverse = matrix inverse)
If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an invertible linear transformation given by $T(\vec{x})=A \vec{x}$ then $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation given by $T^{-1}(\vec{x})=A^{-1} \vec{x}$.

The beginning of transformational geometry

Theorem

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an invertible linear transformation.
(1) If L is a line in \mathbb{R}^{n} then $T(L)$ is a line in \mathbb{R}^{n}. (T preserves lines.)
(2) If L_{1} and L_{2} are parallel lines then $T\left(L_{1}\right)$ and $T\left(L_{2}\right)$ are parallel. (T preserves parallel lines.)
(3) If the point \vec{x} lies on the line L, then the point $T(\vec{x})$ lies on the line $T(L)$.
(T preserves incidence.)
(4) If three points \vec{x}_{1}, \vec{x}_{2}, and \vec{x}_{3} lie on the same line, then $T\left(\vec{x}_{1}\right)$, $T\left(\vec{x}_{2}\right)$, and $T\left(\vec{x}_{3}\right)$ lie on the same line. (T preserves collinearity.)
(5) If S is the set of points between \vec{x}_{1} and \vec{x}_{2} on the line L, then $T(S)$ is the set of points between $T\left(\vec{x}_{1}\right)$ and $T\left(\vec{x}_{2}\right)$ on the line $T(L)$.
(T preserves betweenness.)

