Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with matrix A.

Vocabulary relating to T:

- The range ran(T) is the set of outputs of T.
- The **kernel** ker(*T*) is the inverse image $T^{-1}(\vec{0})$ (the set of input vectors \vec{x} for which $T(\vec{x}) = \vec{0}$).
- *T* is **onto** or **surjective** if $ran(T) = \mathbb{R}^m$.
- *T* is one-to-one or injective if different inputs *x*₁ ≠ *x*₂ produce different outputs *T*(*x*₁) ≠ *T*(*x*₂).

Vocabulary relating to A:

- The **column space** col(A) is the span of the columns of A.
- The **null space** null(A) is the set of solutions of $A\vec{x} = \vec{0}$.

Theorem

T is injective if and only if $ker(T) = {\vec{0}}$.

Theorem

Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation given by $T(\vec{x}) = A\vec{x}$.

- T is surjective if and only if the columns of A span \mathbb{R}^m .
- T is injective if and only if the columns of A are linearly independent.

Theorem

If m = n, T is injective if and only if T is surjective.

Theorem

n vectors in \mathbb{R}^n are linearly independent if and only if they span \mathbb{R}^n .

A **basis** of \mathbb{R}^n is a set of vectors that are linearly independent and span \mathbb{R}^n .

Updated Amazing Awesome Unifying Invertible Matrix Theorem

Theorem. Suppose A is an $n \times n$ matrix. The following are equivalent.

A is invertible.

3

8

15 16

17

19 20

- A is the product of elementary matrices.
- The reduced row echelon form of A is I_n .
- A has *n* pivot variables in its reduced row echelon form. (i.e. rank(A) = n).
- **(**) $A\vec{x} = \vec{0}$ has only the solution $\vec{x} = \vec{0}$. (i.e. null(A) = $\vec{0}$.)
- **6** $A\vec{x} = \vec{b}$ has at least one solution for all \vec{b} in \mathbb{R}^n . (i.e. $A\vec{x} = \vec{b}$ is consistent for all \vec{b} in \mathbb{R}^n .)
 - $A\vec{x} = \vec{b}$ has at most one solution for all \vec{b} in \mathbb{R}^n .
 - $A\vec{x} = \vec{b}$ has exactly one solution for all \vec{b} in \mathbb{R}^n .
- 9 There is an $n \times n$ matrix C such that $CA = I_n$.
- 0 There is an $n \times n$ matrix D such that $AD = I_n$.
 - A^{T} is invertible.
- The columns of A are linearly independent.
- 13 The columns of A span \mathbb{R}^n . (i.e. $col(A) = \mathbb{R}^n$.)
- ¹⁴ The columns of A form a basis of \mathbb{R}^n .
 - The linear transformation $T(\vec{x}) = A\vec{x}$ is injective.
 - The linear transformation $T(\vec{x}) = A\vec{x}$ has kernel $\{\vec{0}\}$ (i.e. $T^{-1}(\vec{0}) = \{\vec{0}\}$).
 - The linear transformation $T(\vec{x}) = A\vec{x}$ is surjective. (i.e. $ran(T) = \mathbb{R}^{n}$.)
- 1 The linear transformation $T(\vec{x}) = A\vec{x}$ is a bijection (both injective and surjective).

The linear transformation $T(\vec{x}) = A\vec{x}$ is invertible.

The rows of A are linearly independent.

```
21 The rows of A span \mathbb{R}^n.
```

The rows of *A* form a basis of \mathbb{R}^n .

Theorem (Linear transformation composition

= matrix multiplication)

If $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^m \to \mathbb{R}^p$ are linear transformations given by $T_1(\vec{x}) = A\vec{x}$ and $T_2(\vec{x}) = B\vec{x}$ then $T_2 \circ T_1 : \mathbb{R}^n \to \mathbb{R}^p$ is a linear transformation given by $T_2 \circ T_1(\vec{x}) = BA\vec{x}$.

Theorem (Linear transformation inverse = matrix inverse)

If $T : \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear transformation given by $T(\vec{x}) = A\vec{x}$ then $T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation given by $T^{-1}(\vec{x}) = A^{-1}\vec{x}$.

Theorem

Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear transformation.

- **1** If L is a line in \mathbb{R}^n then T(L) is a line in \mathbb{R}^n . (T preserves lines.)
- If L_1 and L_2 are parallel lines then $T(L_1)$ and $T(L_2)$ are parallel. (*T* preserves parallel lines.)
- If the point x lies on the line L, then the point T(x) lies on the line T(L).
 (T preserves incidence.)
- If three points \vec{x}_1 , \vec{x}_2 , and \vec{x}_3 lie on the same line, then $T(\vec{x}_1)$, $T(\vec{x}_2)$, and $T(\vec{x}_3)$ lie on the same line. (*T* preserves collinearity.)
- Solution If S is the set of points between \vec{x}_1 and \vec{x}_2 on the line L, then T(S) is the set of points between $T(\vec{x}_1)$ and $T(\vec{x}_2)$ on the line T(L).

(*T* preserves betweenness.)