A (*real*) *vector space* V is a set of things called *vectors* together with two operations called *addition* and *scalar multiplication* satisfying the following properties:

- **1** If  $\vec{u}$  and  $\vec{v}$  are in *V*, then  $\vec{u} + \vec{v}$  is in *V*. (closed under addition)
- 2  $\vec{u} + \vec{v} = \vec{v} + \vec{u}$  (addition is commutative)
- 3  $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$  (addition is associative)
- There is a vector called  $\vec{0}$  such that  $\vec{0} + \vec{u} = \vec{u}$ . (additive identity)
- So For each  $\vec{u}$  there is a vector  $-\vec{u}$  such that  $\vec{u} + (-\vec{u}) = \vec{0}$ . (inverses)
- If  $\vec{u}$  is in V, then  $c\vec{u}$  is in V. (closed under scalar multiplication)
- $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$ . (distributive law #1)
- (*c* + *d*) $\vec{u} = c\vec{u} + d\vec{u}$ . (distributive law #2)
- $c(d\vec{u}) = (cd)\vec{u}$  (scalar multiplication is associative)
- **1**  $\vec{u} = \vec{u}$ .

Since linear combinations work in vector spaces, all linear algebra works in vector spaces!

Are these all vector spaces?

- **1**  $2 \times 2$  matrices, with regular addition and scalar multiplication.
- Complex numbers, with regular addition and (real) scalar multiplication.
- The set of polynomials, with regular addition and scalar multiplication.
- Polynomials of degree at most 2, with regular addition and scalar multiplication.

If they are, what is the (real) dimension of these vector spaces?

## Vector space linear transformations

Are these linear transformations?

• The function T(a + bi) = a - bi from  $\mathbb{C}$  to  $\mathbb{C}$ .

2 The function  $T(\vec{v}) = ||\vec{v}||$  from  $\mathbb{R}^2$  to  $\mathbb{R}$ .

3 The function 
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a, b, c, d)$$
 from 2 × 2 matrices to  $\mathbb{R}^4$ .

- The function T(f) = f' from the set of polynomials of degree at most 2 to itself.
- Solution  $T(A) = \operatorname{rref}(A)$  from 2 × 2 matrices to 2 × 2 matrices.
- The function T(p) = p(0) from the set of polynomials of degree at most 2 to  $\mathbb{R}$ .

For those that are, what is their range, kernel, rank, and nullity? What is their associated matrix?

## **Amazing Vector Space Theorem!**

Suppose *V* and *W* are vector spaces. An *isomorphism* is a bijective linear transformation  $T : V \to W$ .

*V* and *W* are *isomorphic* if there is an isomorphism between them.

## Theorem

Every n-dimensional (real) vector space is isomorphic to  $\mathbb{R}^n$ .

