- An *n*-dimensional vector $\vec{v} = (v_1, v_2, ..., v_n)$ is both a point in *n*-space, and also as an arrow from the origin to that point.
- The numbers v_1 , v_2 , ..., v_n are called the *components* of \vec{v} .
- The *zero vector* $\vec{0}$ is the vector $(0, 0, \dots, 0)$.
- A scalar multiple of a vector $\vec{v} = (v_1, \dots, v_n)$ is $c\vec{v} = c(v_1, \dots, v_n) = (cv_1, \dots, cv_n).$
- The *sum* of two vectors is $\vec{v} + \vec{w} = (v_1, ..., v_n) + (w_1, ..., w_n) = (v_1 + w_1, ..., v_n + w_n).$
- The *length* or *magnitude* of $\vec{v} = (v_1, \dots, v_n)$ is $||\vec{v}|| = \sqrt{v_1^2 + \dots + v_n^2}.$
- A *unit vector* is a vector with length 1. The *standard unit vectors* are $\vec{i} = (1,0)$ and $\vec{j} = (0,1)$ in two dimensions, $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$, and $\vec{k} = (0,0,1)$ in three dimensions, and $\vec{e}_1 = (1,0,\ldots,0)$, $\vec{e}_2 = (0,1,0,\ldots,0)$, ..., $\vec{e}_n = (0,0,\ldots,0,1)$ in *n* dimensions.

- The *dot product* of $\vec{v} = (v_1, v_2, ..., v_n)$ and $\vec{w} = (w_1, w_2, ..., w_n)$ is $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$.
- If a set of vectors $\vec{v}_1, \ldots, \vec{v}_n$ are all orthogonal to each other then they're called an orthogonal set of vectors. If they're also all unit vectors, then they're called an **orthonormal set**.
- The vector \vec{w} is a *linear combination* of the vectors \vec{v}_1 through \vec{v}_k if there exist scalars c_1, \ldots, c_k such that $\vec{w} = c_1 \vec{v}_1 + \ldots + c_k \vec{v}_k$.

- The *dot product* of $\vec{v} = (v_1, v_2, ..., v_n)$ and $\vec{w} = (w_1, w_2, ..., w_n)$ is $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$.
- If a set of vectors $\vec{v}_1, \ldots, \vec{v}_n$ are all orthogonal to each other then they're called an orthogonal set of vectors. If they're also all unit vectors, then they're called an **orthonormal set**.
- The vector \vec{w} is a *linear combination* of the vectors \vec{v}_1 through \vec{v}_k if there exist scalars c_1, \ldots, c_k such that $\vec{w} = c_1 \vec{v}_1 + \ldots + c_k \vec{v}_k$.

Questions

