Vectors and vector algebra

- An n-dimensional vector $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is both a point in n-space, and also as an arrow from the origin to that point.
- The numbers $v_{1}, v_{2}, \ldots, v_{n}$ are called the components of \vec{v}.
- The zero vector $\overrightarrow{0}$ is the vector $(0,0, \ldots, 0)$.
- A scalar multiple of a vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ is $c \vec{v}=c\left(v_{1}, \ldots, v_{n}\right)=\left(c v_{1}, \ldots, c v_{n}\right)$.
- The sum of two vectors is $\vec{v}+\vec{w}=\left(v_{1}, \ldots, v_{n}\right)+\left(w_{1}, \ldots, w_{n}\right)=\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right)$.
- The length or magnitude of $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ is $\|\vec{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}$.
- A unit vector is a vector with length 1. The standard unit vectors are $\vec{i}=(1,0)$ and $\vec{j}=(0,1)$ in two dimensions, $\vec{i}=(1,0,0), \vec{j}=(0,1,0)$, and $\vec{k}=(0,0,1)$ in three dimensions, and $\vec{e}_{1}=(1,0, \ldots, 0), \vec{e}_{2}=(0,1,0, \ldots, 0), \ldots$, $\vec{e}_{n}=(0,0, \ldots, 0,1)$ in n dimensions.
- The dot product of $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is $\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}$.
- If a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are all orthogonal to each other then they're called an orthogonal set of vectors. If they're also all unit vectors, then they're called an orthonormal set.
- The vector \vec{w} is a linear combination of the vectors \vec{v}_{1} through \vec{v}_{k} if there exist scalars c_{1}, \ldots, c_{k} such that $\vec{w}=c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}$.
- The dot product of $\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ is $\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}$.
- If a set of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are all orthogonal to each other then they're called an orthogonal set of vectors. If they're also all unit vectors, then they're called an orthonormal set.
- The vector \vec{w} is a linear combination of the vectors \vec{v}_{1} through \vec{v}_{k} if there exist scalars c_{1}, \ldots, c_{k} such that $\vec{w}=c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}$.

Questions

(1) Is $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ a linear combination of $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}-3 \\ 1\end{array}\right]$?
(2) What is the set of all linear combinations of the vector $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$?
(3) What about the vectors $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}-3 \\ 1\end{array}\right]$?
(4) What about the vectors $\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right]$?

