EXTREMAL RAYS OF THE CONE OF BETTI TABLES OF COMPLETE INTERSECTIONS

Alex Sutherland Cole Hawkins Mike Annunziata December 15, 2015

THE BASICS

WHAT IN TARNATION IS A BETTI DIAGRAM?!

Modules

Betti diagrams

COMPLETE INTERSECTIONS

Polynomial ring in n variables: k[x, y, z] (n = 3)

Mod out by pure powers ideal: $I = (x^a, y^b, z^c)$

WLOG $a \le b \le c$

Complete intersection: $\frac{k[x, y, z]}{l}$

WHAT IS $\beta_{i,j}$?

$$\beta_{0,0} = 1$$

$$\beta_{1,j}=\#$$
 of generators of the ideal of degree j

 $\beta_{i,j} = \#$ collections of i generators where degrees sum to j

$$\beta(2,3,3) := \beta\left(\frac{k[x,y,z]}{(x^2,y^3,z^3)}\right)$$

$$\beta(2,3,3) := \beta\left(\frac{k[x,y,z]}{(x^2,y^3,z^3)}\right)$$

$$\begin{bmatrix} 1 & \beta_{1,1} & \beta_{2,2} & \beta_{3,3} \\ - & \beta_{1,2} & \beta_{2,3} & \beta_{3,4} \\ - & \beta_{1,3} & \beta_{2,4} & \beta_{3,5} \\ - & \beta_{1,4} & \beta_{2,5} & \beta_{3,6} \\ - & \beta_{1,5} & \beta_{2,6} & \beta_{3,7} \\ - & \beta_{1,6} & \beta_{2,7} & \beta_{3,8} \end{bmatrix}$$

$$\beta(2,3,3) := \beta\left(\frac{k[x,y,z]}{(x^2,y^3,z^3)}\right)$$

$$\begin{bmatrix} 1 & \beta_{1,1} & \beta_{2,2} & \beta_{3,3} \\ - & \beta_{1,2} & \beta_{2,3} & \beta_{3,4} \\ - & \beta_{1,3} & \beta_{2,4} & \beta_{3,5} \\ - & \beta_{1,4} & \beta_{2,5} & \beta_{3,6} \\ - & \beta_{1,5} & \beta_{2,6} & \beta_{3,7} \\ - & \beta_{1,6} & \beta_{2,7} & \beta_{3,8} \end{bmatrix}$$

Remember $\beta_{1,j}=\#$ of generators of the ideal of degree j

$$\beta(2,3,3) := \beta\left(\frac{k[x,y,z]}{(x^2,y^3,z^3)}\right)$$

$$\begin{bmatrix} 1 & - & \beta_{2,2} & \beta_{3,3} \\ - & 1 & \beta_{2,3} & \beta_{3,4} \\ - & 2 & \beta_{2,4} & \beta_{3,5} \\ - & - & \beta_{2,5} & \beta_{3,6} \\ - & - & \beta_{2,6} & \beta_{3,7} \\ - & - & \beta_{2,7} & \beta_{3,8} \end{bmatrix}$$

 $\beta_{2,3}=\#$ of pairs of generators of the ideal whose degrees sum to 3

$$\beta(2,3,3) := \beta \left(\frac{k[x,y,z]}{(x^2,y^3,z^3)} \right)$$

$$\begin{bmatrix} 1 & - & - & \beta_{3,3} \\ - & 1 & - & \beta_{3,4} \\ - & 2 & - & \beta_{3,5} \\ - & - & 2 & \beta_{3,6} \\ - & - & 1 & \beta_{3,7} \\ - & - & - & \beta_{3,8} \end{bmatrix}$$

$$\beta(2,3,3) := \beta\left(\frac{k[x,y,z]}{(x^2,y^3,z^3)}\right)$$

$$\begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 2 & - & - \\ - & - & 2 & - \\ - & - & 1 & - \\ - & - & - & 1 \end{bmatrix}$$

Embed Betti diagrams in vector space

$$V=\bigoplus_{i\in\mathbb{Z}_{\geq 0}}\bigoplus_{j\in\mathbb{Z}}\mathbb{Q}$$

Embed Betti diagrams in vector space

$$V = \bigoplus_{i \in \mathbb{Z}_{\geq 0}} \bigoplus_{j \in \mathbb{Z}} \mathbb{Q}$$

Consider the cone

$$B = \left\{ \sum_{k=1}^l r_k \beta^{(k)}(a_1^{(k)}, \cdots, a_{n_k}^{(k)}) \ \middle| \ r_k \in \mathbb{Q}_{\geq 0}, \ l \in \mathbb{Z}_{\geq 0} \right\}$$

Find extremal rays of

$$B = \left\{ \sum_{k=1}^l r_k \beta^{(k)}(a_1^{(k)}, \cdots, a_{n_k}^{(k)}) \ \big| \ r_k \in \mathbb{Q}_{\geq 0}, \ l \in \mathbb{Z}_{\geq 0} \right\}$$

Come up with a partial order on these extremal rays

THE THEOREM

MAIN THEOREM STATEMENT

Conjecture: The $\beta^{(k)}(a_1^{(k)},\cdots,a_{n_k}^{(k)})$ form the set of extremal rays for the cone $B=\left\{\sum\limits_{k=1}^{l}r_k\beta^{(k)}(a_1^{(k)},\cdots,a_{n_k}^{(k)})\,\big|\,r_k\in\mathbb{Q}_{\geq 0},\,l\in\mathbb{Z}_{\geq 0}\right\}$

METHOD OF PROOF

Show
$$\beta(a_1, \dots, a_c) \neq \sum_{k=1}^l r_k \beta^{(k)}(a_1^{(k)}, \dots, a_{n_k}^{(k)})$$
 for distinct $\beta^{(k)}$

REDUCTION ZERO

Simply, ${\beta^{(k)}}_{0,0}=1$ for each k.

REDUCTION ZERO

Simply,
$$\beta^{(k)}_{0,0} = 1$$
 for each k.

REDUCTIONS ONE AND TWO

For each $\beta^{(k)}$, the bottom right 1 lands in the same place:

REDUCTIONS ONE AND TWO

For each $\beta^{(k)}$, the bottom right 1 lands in the same place:

1. For each $\beta^{(k)}(a_1^{(k)}, \dots, a_{n_k}^{(k)})$, $n_k = n$

REDUCTIONS ONE AND TWO

For each $\beta^{(k)}$, the bottom right 1 lands in the same place:

- 1. For each $\beta^{(k)}(a_1^{(k)}, \dots, a_{n_k}^{(k)})$, $n_k = n$
- 2. For each k, $a_1^{(k)} + \cdots + a_{n_k}^{(k)} = a_1 + \cdots + a_n$

$$\begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 2 & - & - \\ - & - & 2 & - \\ - & - & 1 & - \\ - & - & - & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 2 & - & - \\ - & - & 2 & - \\ - & - & 1 & - \\ - & - & - & 1 \end{bmatrix} + \begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 1 & 1 & - \\ - & - & 1 & - \\ - & - & - & - \\ - & - & - & - \end{bmatrix}$$

$$\begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 2 & - & - \\ - & - & 2 & - \\ - & - & 1 & - \\ - & - & - & 1 \end{bmatrix} + \begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 1 & 1 & - \\ - & - & 1 & - \\ - & - & - & - \\ - & - & - & - \end{bmatrix} = 2 \begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 3/2 & - & - \\ - & - & 3/2 & - \\ - & - & 1/2 & - \\ - & - & - & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 2 & - & - \\ - & - & 2 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & - & 1 \\ - & - & - & 1 \end{bmatrix} = \begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 1 & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 2 & - & - \\ - & - & 2 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & - \\ - & - & 1 & 2 \\ - & - & - & 1/2 \end{bmatrix}$$

0. The top left entry of our Betti table must be a 1.

- 0. The top left entry of our Betti table must be a 1.
- 1. Every summed Betti table must have the same number of generators.

- 0. The top left entry of our Betti table must be a 1.
- 1. Every summed Betti table must have the same number of generators.
- 2. Degrees of generators of complete intersections sum to the same number.

PROOF

WHERE ARE WE NOW?

Main theorem proved for n = 2, n = 3.

It remains to induct on n.

ADDITIVE INVERSES

Given a Betti Table β , define $-\beta$ by:

$$(-\beta)_{i,j} := -(\beta_{i,j})$$

ADDITIVE INVERSES

Given a Betti Table β , define $-\beta$ by:

$$(-\beta)_{i,j} := -(\beta_{i,j})$$

Note, then $\beta + (-\beta) = 0$, the Betti table with all 0 entries.

ADDITIVE INVERSES

Given a Betti Table β , define $-\beta$ by:

$$(-\beta)_{i,j} := -(\beta_{i,j})$$

Note, then $\beta + (-\beta) = 0$, the Betti table with all 0 entries.

As an example, consider $\beta = \beta(2,3,3)$. Then,

$$\beta = \begin{bmatrix} 1 & - & - & - \\ - & 1 & - & - \\ - & 2 & - & - \\ - & - & 2 & - \\ - & - & 1 & - \\ - & - & - & 1 \end{bmatrix} \text{ and } -\beta = \begin{bmatrix} (-1) & - & - & - \\ - & (-1) & - & - \\ - & (-2) & - & - \\ - & - & (-2) & - \\ - & - & (-1) & - \\ - & - & - & (-1) \end{bmatrix}$$

21

IT'S A GROUP!

Let $G := \{\beta \mid \beta \text{ is a Betti Table}\} \cup \{-\beta \mid \beta \text{ is a Betti Table}\}$

Proposition

G is an abelian group under +

GROUP AXIOMS

Recall that for G to be an abelian group, G has to:

- 1. have closure under +
- 2. be associative
- 3. have an identity element
- 4. have inverses, and
- 5. be commutative

Note that we can also create a multiplicative structure, \odot , on G.

RING STRUCTURE

Consider the closure of G under ⊙; call it R.

Theorem

R is an integral domain under $+,\odot$

INTEGRAL DOMAIN AXIOMS

For R to be an integral domain, R has to:

- 1. be a commutative ring with unity under +, \odot , so:
 - 1.1 Abelian group under +
 - 1.2 Closure of \overline{B} under \odot
 - 1.3 Associative under ⊙
 - 1.4 Commutative under ⊙
 - 1.5 Distributivity of \odot over +, and
 - 1.6 Identity element under ⊙
- 2. have no zero divisors

WHY DOES IT MATTER?

Since R lacks zero divisors, multiplication is cancellative: If $\alpha, \beta, \omega \in G$ and $\omega \neq 0$. Then, $\alpha \odot \omega = \beta \odot \omega \implies \alpha = \beta$

WHY DOES IT MATTER?

Since R lacks zero divisors, multiplication is cancellative:

If
$$\alpha, \beta, \omega \in G$$
 and $\omega \neq 0$. Then, $\alpha \odot \omega = \beta \odot \omega \implies \alpha = \beta$

Recall, we are interested in
$$\beta(a_1,\ldots,a_n)=\sum\limits_{k=1}^l r_k\beta^{(k)}(a_1^{(k)},\cdots,a_n^{(k)})$$

Furthermore:

Fact:
$$\beta(a_1, \ldots, a_n) = \beta(a_1, \ldots, a_{n-1}) \odot \beta(a_n)$$

WHY DOES IT MATTER?

Since R lacks zero divisors, multiplication is cancellative:

If
$$\alpha, \beta, \omega \in G$$
 and $\omega \neq 0$. Then, $\alpha \odot \omega = \beta \odot \omega \implies \alpha = \beta$

Recall, we are interested in
$$\beta(a_1,\ldots,a_n)=\sum\limits_{k=1}^l r_k\beta^{(k)}(a_1^{(k)},\cdots,a_n^{(k)})$$

Furthermore:

Fact:
$$\beta(a_1, \ldots, a_n) = \beta(a_1, \ldots, a_{n-1}) \odot \beta(a_n)$$

Therefore, if $a_n^{(k)} = a_n$ for all k, we can reduce to the n-1 case, as \odot is distributive and cancellative

SO FAR

- 1. Conjecture is a theorem for n = 2 and n = 3
- 2. We have an inductive step that puts us closer to the general case

WHAT'S UP NEXT

- 1. Finish induction on n for main theorem
- 2. Identify a partial order for diagrams in B
- 3. Use partial order to obtain structural results about the cone (for example, what else is in the cone?)

