The Multiple-Urn Ehrenfest Model
A Look into Eigenanalysis and Hitting Times

Jacquelyn Combellick, Katie Patterson, Daniel Raban
Advised by Yung-Pin Chen

Willamette Mathematics Consortium REU

July 30, 2016
What will we cover today?
What will we cover today?

(1) Markov chains
What will we cover today?

(1) Markov chains
(2) The Ehrenfest urn model
What will we cover today?

1. Markov chains
2. The Ehrenfest urn model
3. Eigenanalysis
What will we cover today?

1. Markov chains
2. The Ehrenfest urn model
3. Eigenanalysis
4. Mixing times
What will we cover today?

1. Markov chains
2. The Ehrenfest urn model
3. Eigenanalysis
4. Mixing times
5. Hitting times
What will we cover today?

1. Markov chains
2. The Ehrenfest urn model
3. Eigenanalysis
4. Mixing times
5. Hitting times
6. Summary
The Ehrenfest urn model example

Urn 0

3
1
4

Urn 1

M
2
What is a Markov chain?

A **Markov chain** is a sequence of random variables X_0, X_1, X_2, \ldots such that

$$\Pr[X_{n+1} = s_{n+1} | X_0 = s_0, X_1 = s_1, \ldots, X_n = s_n] = \Pr[X_{n+1} = s_{n+1} | X_n = s_n]$$

where $s_0, s_1, \ldots, s_n, s_{n+1}$ are elements in the state space of the Markov chain.
What is a Markov chain?

A **Markov chain** is a sequence of random variables $X_0, X_1, X_2, ...$ such that

$$\Pr[X_{n+1} = s_{n+1} \mid X_0 = s_0, X_1 = s_1, ..., X_n = s_n] = \Pr[X_{n+1} = s_{n+1} \mid X_n = s_n]$$

where $s_0, s_1, ..., s_n, s_{n+1}$ are elements in the state space of the Markov chain.

This is known as the **memoryless property**.
What is a Markov chain?

A **Markov chain** is a sequence of random variables $X_0, X_1, X_2, ...$ such that
\[
\Pr[X_{n+1} = s_{n+1} | X_0 = s_0, X_1 = s_1, ..., X_n = s_n] = \Pr[X_{n+1} = s_{n+1} | X_n = s_n]
\]
where $s_0, s_1, ..., s_n, s_{n+1}$ are elements in the state space of the Markov chain.

This is known as the **memoryless property**.

Let X_n denote the number of balls in Urn 1 at time $n = 0, 1, 2,...$. Then
$(X_0, X_1, ...)$ forms a Markov chain with the state space $S = \{0, 1, ..., M\}$.

The Ehrenfest urn model example

![Diagram of the Ehrenfest urn model example with urns 0 and 1, showing the distribution of red (3) and blue (4) balls in urn 0, and red (M) and blue (2) balls in urn 1.]
Transition matrix

A $k \times k$ matrix \mathbb{P} is said to be a **transition matrix** of a Markov chain $(X_0, X_1, ...)$ with state space $S = \{s_1, ..., s_k\}$ if

$$\Pr[X_{n+1} = s_j \mid X_n = s_i] = \mathbb{P}_{i,j}.$$

Combellick, Patterson, Raban, Chen
Transition matrix

A $k \times k$ matrix \mathbb{P} is said to be a transition matrix of a Markov chain $(X_0, X_1, ...)$ with state space $S = \{s_1, ..., s_k\}$ if

$$\Pr[X_{n+1} = s_j \mid X_n = s_i] = \mathbb{P}_{i,j}.$$

For the Ehrenfest urn model with $M=5$ balls, the transition matrix is:

$$
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1/5 & 0 & 4/5 & 0 & 0 & 0 & 0 \\
0 & 2/5 & 0 & 3/5 & 0 & 0 & 0 \\
0 & 0 & 3/5 & 0 & 2/5 & 0 & 0 \\
0 & 0 & 0 & 4/5 & 0 & 1/5 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{bmatrix}
$$
Stationary distribution

Let \((X_0, X_1, \ldots)\) be a Markov chain with state space \(S = \{s_1, \ldots, s_k\}\) and transition matrix \(P\). A row vector \(\pi = (\pi_1, \ldots, \pi_k)\) is said to be a stationary distribution for the Markov chain, if it satisfies

(i) \(\pi_i \geq 0\) for \(i = 1, \ldots, k\), and \(\sum_{i=1}^{k} \pi_i = 1\), and

(ii) \(\pi P = \pi\), meaning that \(\sum_{i=1}^{k} \pi_i P_{i,j} = \pi_j\) for \(j = 1, \ldots, k\).
The 3-urn Ehrenfest model

Urn 0

Urn 1

Urn 2
The d-urn Ehrenfest model
Motivation for studying the multiple-urn Ehrenfest model
Motivation for studying the multiple-urn Ehrenfest model

Real-world applications:
Motivation for studying the multiple-urn Ehrenfest model

Real-world applications:

(1) Population migration
Motivation for studying the multiple-urn Ehrenfest model

Real-world applications:

(1) Population migration
 (expected hitting time)
Motivation for studying the multiple-urn Ehrenfest model

Real-world applications:

(1) Population migration
 (expected hitting time)

(2) Statistical mechanics, thermodynamics, and diffusion
Motivation for studying the multiple-urn Ehrenfest model

Real-world applications:

(1) Population migration
 (expected hitting time)

(2) Statistical mechanics, thermodynamics, and diffusion
 (stationary distribution)
Motivation for studying the multiple-urn Ehrenfest model

Real-world applications:

(1) Population migration
 (expected hitting time)

(2) Statistical mechanics, thermodynamics, and diffusion
 (stationary distribution)

(3) Treatment allocation
Why is eigenanalysis important?
Why is eigenanalysis important?

(1) Eigenvalues can tell how a Markov chain behaves.
Why is eigenanalysis important?

(1) Eigenvalues can tell how a Markov chain behaves. For example, a finite Markov chain converges to a stationary distribution if and only if its transition matrix has eigenvalue 1 with multiplicity 1 and all other eigenvalues are of modulus less than 1.
Why is eigenanalysis important?
Why is eigenanalysis important?

(2) We can diagonalize a transition matrix \mathbb{P} and compute \mathbb{P}^n easily, provided \mathbb{P} is diagonalizable.
(2) We can diagonalize a transition matrix \mathbb{P} and compute \mathbb{P}^n easily, provided \mathbb{P} is diagonalizable.

That is, we can find an invertible matrix \mathbb{A} such that

$$\mathbb{P} = \mathbb{A}^{-1} \mathbb{D} \mathbb{A},$$

where \mathbb{D} is a diagonal matrix with all the eigenvalues of \mathbb{P} on its main diagonal.
Why is eigenanalysis important?

(2) We can diagonalize a transition matrix \mathbb{P} and compute \mathbb{P}^n easily, provided \mathbb{P} is diagonalizable.

That is, we can find an invertible matrix \mathbb{A} such that

$$\mathbb{P} = \mathbb{A}^{-1} \mathbb{D} \mathbb{A},$$

where \mathbb{D} is a diagonal matrix with all the eigenvalues of \mathbb{P} on its main diagonal.

This helps us compute \mathbb{P}^n:

$$\mathbb{P}^n = \mathbb{A}^{-1} \mathbb{D}^n \mathbb{A}.$$
Eigenvalues of the 3-urn model

For the 3-urn model, we started by observing the eigenvalues λ for various values of M, the number of balls in the model.
Eigenvalues of the 3-urn model

For the 3-urn model, we started by observing the eigenvalues λ for various values of M, the number of balls in the model.

$M = 1$: $\lambda = 1, \frac{-1}{2}, \frac{-1}{2}$.
Eigenvalues of the 3-urn model

For the 3-urn model, we started by observing the eigenvalues λ for various values of M, the number of balls in the model.

$M = 1$: $\lambda = 1, \frac{-1}{2}, \frac{-1}{2}$.

$M = 2$: $\lambda = 1, \frac{1}{4}, \frac{1}{4}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.
Eigenvalues of the 3-urn model

For the 3-urn model, we started by observing the eigenvalues λ for various values of M, the number of balls in the model.

$M = 1$: $\lambda = 1, \frac{-1}{2}, \frac{-1}{2}$.

$M = 2$: $\lambda = 1, \frac{1}{4}, \frac{1}{4}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

$M = 3$: $\lambda = 1, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.
Eigenvalues of the 3-urn model

For the 3-urn model, we started by observing the eigenvalues λ for various values of M, the number of balls in the model.

$M = 1$: $\lambda = 1, \frac{-1}{2}, \frac{-1}{2}$.

$M = 2$: $\lambda = 1, \frac{1}{4}, \frac{1}{4}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

$M = 3$: $\lambda = 1, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}.$

$M = 4$: $\lambda = 1, \frac{5}{8}, \frac{5}{8}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}.$
Eigenvalues of the 3-urn model

For the 3-urn model, we started by observing the eigenvalues λ for various values of M, the number of balls in the model.

$M = 1$: $\lambda = 1, \frac{-1}{2}, \frac{-1}{2}$.

$M = 2$: $\lambda = 1, \frac{1}{4}, \frac{1}{4}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

$M = 3$: $\lambda = 1, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

$M = 4$: $\lambda = 1, \frac{5}{8}, \frac{5}{8}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

Our observation:
For the 3-urn model with M balls, the transition matrix has $(M + 1)$ distinct eigenvalues equally distanced between 1 and $\frac{-1}{2}$, and the kth largest eigenvalue has multiplicity k.
Eigenvalues of the 3-urn model

For the 3-urn model, we started by observing the eigenvalues λ for various values of M, the number of balls in the model.

$M = 1$: $\lambda = 1, \frac{-1}{2}, \frac{-1}{2}$.

$M = 2$: $\lambda = 1, \frac{1}{4}, \frac{1}{4}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

$M = 3$: $\lambda = 1, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

$M = 4$: $\lambda = 1, \frac{5}{8}, \frac{5}{8}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{8}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}$.

Our observation:
For the 3-urn model with M balls, the transition matrix has $(M + 1)$ distinct eigenvalues equally distanced between 1 and $-\frac{1}{2}$, and the kth largest eigenvalue has multiplicity k. Let $\alpha = \frac{3}{2^M}$. Then the eigenvalues are given by

$$1, (1 - \alpha)_2, (1 - 2\alpha)_3, ..., \left(\frac{-1}{2}\right)^{M+1}.$$
Mark Kac’s results

In 1947, mathematician Mark Kac examined the Ehrenfest urn model with 2 urns and found that the eigenvectors and eigenvalues of the transition matrix are determined by a system of linear equations using the generating function

\[f(z) = \sum_{k=0}^{\infty} x_k z^k \]

where \(x_k \) is the \(k \)th component of the eigenvector \(x \).
Mark Kac’s results

Using Kac’s function as a model, we define the following polynomial to generate the row eigenvectors for the 3-urn model:

\[f^M(z_1, z_2) = \sum_{s_1=0}^{M} \sum_{s_2=0}^{M-s_1} a(s_1, s_2) z_1^{s_1} z_2^{s_2} \]

where \(a(s_1, s_2) \) is the \((s_1, s_2)\)th component of the eigenvector \(\mathbf{a} \) from the transition matrix \(\mathbb{P} \).
Transition probabilities

The possible states for the 3-urn model are given by $s = (s_1, s_2)$. The transition probabilities are then
Transition probabilities

The possible states for the 3-urn model are given by $s = (s_1, s_2)$. The transition probabilities are then

$$\Pr[(s_1, s_2) \rightarrow (s_1 - 1, s_2)] = \frac{s_1}{2M}$$
Transition probabilities

The possible states for the 3-urn model are given by $s = (s_1, s_2)$. The transition probabilities are then

$$\Pr[(s_1, s_2) \rightarrow (s_1 - 1, s_2)] = \frac{s_1}{2M}$$

$$\Pr[(s_1, s_2) \rightarrow (s_1 + 1, s_2)] = \frac{M - s_1 - s_2}{2M}$$

$$\Pr[(s_1, s_2) \rightarrow (s_1 + 1, s_2 - 1)] = \frac{s_2}{2M}$$

$$\Pr[(s_1, s_2) \rightarrow (s_1 - 1, s_2 + 1)] = \frac{s_1}{2M}$$

$$\Pr[(s_1, s_2) \rightarrow (s_1, s_2 + 1)] = \frac{M - s_1 - s_2}{2M}$$

$$\Pr[(s_1, s_2) \rightarrow (s_1, s_2 - 1)] = \frac{s_2}{2M}. $$
Derived partial differential equation

Using the fact that \(a \mathbb{P} = \lambda a \) for any eigenvector \(a \) with eigenvalue \(\lambda \), we are able to substitute in our transition probabilities, multiply each term by \(z_1^{s_1} z_2^{s_2} \), and sum over all of \(s_1 \) and \(s_2 \).
Using the fact that \(\mathbf{a} \mathbf{P} = \lambda \mathbf{a} \) for any eigenvector \(\mathbf{a} \) with eigenvalue \(\lambda \), we are able to substitute in our transition probabilities, multiply each term by \(z_1^{s_1} z_2^{s_2} \), and sum over all of \(s_1 \) and \(s_2 \).

After collecting like terms and simplifying, we obtain the partial differential equation

\[
(1 - z_1)(1 + z_1 + z_2) \frac{\partial f^M}{\partial z_1} + (1 - z_2)(1 + z_1 + z_2) \frac{\partial f^M}{\partial z_2} + M(z_1 + z_2 - 2\lambda)f^M(z_1, z_2) = 0.
\]
Generating function and eigenvalues for $d = 3$ urns

Theorem

The coefficients of the functions

$$f_{(r_1, r_2)}^M(z_1, z_2) = (1 - z_1)^{r_1}(1 - z_2)^{r_2}(1 + z_1 + z_2)^{r_3},$$

where $r_1, r_2, \text{ and } r_3$ are nonnegative integers and $r_1 + r_2 + r_3 = M$, define a set of linearly independent eigenvectors of the 3-urn M-ball transition matrix.
Generating function and eigenvalues for $d = 3$ urns

Theorem

The coefficients of the functions

\[f^M_{(r_1, r_2)}(z_1, z_2) = (1 - z_1)^{r_1}(1 - z_2)^{r_2}(1 + z_1 + z_2)^{r_3}, \]

where $r_1, r_2,$ and r_3 are nonnegative integers and $r_1 + r_2 + r_3 = M$, define a set of linearly independent eigenvectors of the 3-urn M-ball transition matrix.

Corollary

The eigenvalues of the 3-urn M-ball transition matrix are $\lambda = \frac{3}{2M}r_3 - \frac{1}{2}$ for $r_3 \in \{0, \cdots, M\}$. Eigenvalue λ has multiplicity $\frac{2M}{3}(1 - \lambda) + 1$.
Example: The row eigenvector matrix A for $M = 3$ balls

Consider the function

$$f_{(r_1, r_2)}^3(z_1, z_2) = (1 - z_1)^{r_1}(1 - z_2)^{r_2}(1 + z_1 + z_2)^{r_3}.$$

For $r_1 + r_2 = \frac{2M}{3}(1 - \lambda)$, we have:
Example: The row eigenvector matrix A for $M = 3$ balls

Consider the function $f^{3}_{(r_1,r_2)}(z_1,z_2) = (1 - z_1)^{r_1}(1 - z_2)^{r_2}(1 + z_1 + z_2)^{r_3}$. For $r_1 + r_2 = \frac{2M}{3}(1 - \lambda)$, we have:

$$0 = 0 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 1$$
Example: The row eigenvector matrix A for $M = 3$ balls

Consider the function $f^{3}_{(r_1, r_2)}(z_1, z_2) = (1 - z_1)^{r_1}(1 - z_2)^{r_2}(1 + z_1 + z_2)^{r_3}$.

For $r_1 + r_2 = \frac{2M}{3}(1 - \lambda)$, we have:

- $0 = 0 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 1$
- $1 = 1 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{1}{2}$
- $1 = 0 + 1 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{1}{2}$
Example: The row eigenvector matrix A for $M = 3$ balls

Consider the function $f_{(r_1, r_2)}^3(z_1, z_2) = (1 - z_1)^r_1(1 - z_2)^r_2(1 + z_1 + z_2)^r_3$.

For $r_1 + r_2 = \frac{2M}{3}(1 - \lambda)$, we have:

1. $0 = 0 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 1$
2. $1 = 1 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{1}{2}$
3. $1 = 0 + 1 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{1}{2}$
4. $2 = 2 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 0$
5. $2 = 1 + 1 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 0$
6. $2 = 0 + 2 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 0$

Combellick, Patterson, Raban, Chen
Example: The row eigenvector matrix A for $M = 3$ balls

Consider the function $f^3_{(r_1, r_2)}(z_1, z_2) = (1 - z_1)^{r_1}(1 - z_2)^{r_2}(1 + z_1 + z_2)^{r_3}$.

For $r_1 + r_2 = \frac{2M}{3}(1 - \lambda)$, we have:

\[
\begin{align*}
0 &= 0 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 1 \\
1 &= 1 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{1}{2} \\
1 &= 0 + 1 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{1}{2} \\
2 &= 2 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 0 \\
2 &= 1 + 1 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 0 \\
2 &= 0 + 2 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = 0 \\
3 &= 3 + 0 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{-1}{2} \\
3 &= 2 + 1 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{-1}{2} \\
3 &= 1 + 2 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{-1}{2} \\
3 &= 0 + 3 = r_1 + r_2 = \frac{2M}{3}(1 - \lambda), \quad \lambda = \frac{-1}{2}
\end{align*}
\]
Example: The row eigenvector matrix A for $M = 3$ balls

With these values for (r_1, r_2), we can assess $f^3_{(r_1, r_2)}(z_1, z_2)$:

$$f^3_{(0, 0)}(z_1, z_2) = (1 + z_1 + z_2)^3 \quad \lambda = 1$$
Example: The row eigenvector matrix A for $M = 3$ balls

With these values for (r_1, r_2), we can assess $f_{(r_1,r_2)}^3(z_1, z_2)$:

\[
\begin{align*}
 f_{(0,0)}^3(z_1, z_2) &= (1 + z_1 + z_2)^3 \quad \lambda = 1 \\
 f_{(1,0)}^3(z_1, z_2) &= (1 - z_1)^1 (1 + z_1 + z_2)^2 \quad \lambda = \frac{1}{2} \\
 f_{(0,1)}^3(z_1, z_2) &= (1 - z_2)^1 (1 + z_1 + z_2)^2
\end{align*}
\]
Example: The row eigenvector matrix \mathbf{A} for $M = 3$ balls

With these values for (r_1, r_2), we can assess $f^3_{(r_1, r_2)}(z_1, z_2)$:

\[
\begin{align*}
 f^3_{(0,0)}(z_1, z_2) &= (1 + z_1 + z_2)^3 & \lambda &= 1 \\
 f^3_{(1,0)}(z_1, z_2) &= (1 - z_1)^1(1 + z_1 + z_2)^2 & \lambda &= \frac{1}{2} \\
 f^3_{(0,1)}(z_1, z_2) &= (1 - z_2)^1(1 + z_1 + z_2)^2 \\
 f^3_{(2,0)}(z_1, z_2) &= (1 - z_1)^2(1 + z_1 + z_2)^1 & \lambda &= 0 \\
 f^3_{(1,1)}(z_1, z_2) &= (1 - z_1)^1(1 - z_2)^1(1 + z_1 + z_2)^1 \\
 f^3_{(0,2)}(z_1, z_2) &= (1 - z_2)^2(1 + z_1 + z_2)^1
\end{align*}
\]
Example: The row eigenvector matrix A for $M = 3$ balls

With these values for (r_1, r_2), we can assess $f_{(r_1, r_2)}^3(z_1, z_2)$:

$$
\begin{align*}
\left(\begin{array}{c}
0, 0 \\
1, 0 \\
0, 1 \\
2, 0 \\
1, 1 \\
0, 2 \\
3, 0 \\
2, 1 \\
1, 2 \\
0, 3
\end{array} \right) & \rightarrow \left(\begin{array}{c}
f_0^3(z_1, z_2) = (1 + z_1 + z_2)^3 & \lambda = 1 \\
f_1^3(z_1, z_2) = (1 - z_1)^1 (1 + z_1 + z_2)^2 & \lambda = \frac{1}{2} \\
f_0^3(z_1, z_2) = (1 - z_2)^1 (1 + z_1 + z_2)^2 \\
f_2^3(z_1, z_2) = (1 - z_1)^2 (1 + z_1 + z_2)^1 & \lambda = 0 \\
f_1^3(z_1, z_2) = (1 - z_1)^1 (1 - z_2)^1 (1 + z_1 + z_2)^1 \\
f_0^3(z_1, z_2) = (1 - z_2)^2 (1 + z_1 + z_2)^1 \\
f_3^3(z_1, z_2) = (1 - z_1)^3 & \lambda = -\frac{1}{2} \\
f_2^3(z_1, z_2) = (1 - z_1)^2 (1 - z_2)^1 \\
f_1^3(z_1, z_2) = (1 - z_1)^1 (1 - z_2)^2 \\
f_0^3(z_1, z_2) = (1 - z_2)^3 .
\end{array} \right)
\end{align*}
$$
Example: The row eigenvector matrix A for $M = 3$ balls

Expanding the two polynomials for $\lambda = \frac{1}{2}$ gives us the coefficients and therefore the components of the corresponding eigenvectors:
Example: The row eigenvector matrix A for $M = 3$ balls

Expanding the two polynomials for $\lambda = \frac{1}{2}$ gives us the coefficients and therefore the components of the corresponding eigenvectors:

$$f^3_{(1,0)}(z_1, z_2) = (1 - z_1)(1 + z_1 + z_2)^2$$

$$= 1 + z_1 + 2z_2 - z_1^2 + 0z_1z_2 + z_2^2 - z_1^3 - 2z_1^2z_2 - z_1z_2^2 + 0z_2^3$$
Example: The row eigenvector matrix A for $M = 3$ balls

Expanding the two polynomials for $\lambda = \frac{1}{2}$ gives us the coefficients and therefore the components of the corresponding eigenvectors:

$$f_{(1,0)}^3(z_1, z_2) = (1 - z_1)(1 + z_1 + z_2)^2$$

$$= 1 + z_1 + 2z_2 - z_1^2 + 0z_1z_2 + z_2^2 - z_1^3 - 2z_1^2z_2 - z_1z_2^2 + 0z_2^3$$

and

$$f_{(0,1)}^3(z_1, z_2) = (1 - z_2)(1 + z_1 + z_2)^2$$

$$= 1 + 2z_1 + z_2 + z_1^2 + 0z_1z_2 - z_2^2 + 0z_1^3 - z_1^2z_2 - 2z_1z_2^2 - z_2^3.$$
Example: The row eigenvector matrix A for $M = 3$ balls

Expanding the two polynomials for $\lambda = \frac{1}{2}$ gives us the coefficients and therefore the components of the corresponding eigenvectors:

$$f_{(1,0)}^3(z_1, z_2) = (1 - z_1)(1 + z_1 + z_2)^2$$
$$= 1 + z_1 + 2z_2 - z_1^2 + 0z_1z_2 + z_2^2 - z_1^3 - 2z_1^2z_2 - z_1z_2^2 + 0z_2^3$$

and

$$f_{(0,1)}^3(z_1, z_2) = (1 - z_2)(1 + z_1 + z_2)^2$$
$$= 1 + 2z_1 + z_2 + z_1^2 + 0z_1z_2 - z_2^2 + 0z_1^3 - z_1^2z_2 - 2z_1z_2^2 - z_2^3.$$

The row eigenvectors corresponding to each of these polynomials are

$$(1, 1, 2, -1, 0, 1, -1, -2, -1, 0)$$
Example: The row eigenvector matrix A for $M = 3$ balls

Expanding the two polynomials for $\lambda = \frac{1}{2}$ gives us the coefficients and therefore the components of the corresponding eigenvectors:

\[
f^3_{(1,0)}(z_1,z_2) = (1 - z_1)(1 + z_1 + z_2)^2
\]

\[
= 1 + z_1 + 2z_2 - z_1^2 + 0z_1z_2 + z_2^2 - z_1^3 - 2z_1^2z_2 - z_1z_2^2 + 0z_2^3
\]

and

\[
f^3_{(0,1)}(z_1,z_2) = (1 - z_2)(1 + z_1 + z_2)^2
\]

\[
= 1 + 2z_1 + z_2 + z_1^2 + 0z_1z_2 - z_2^2 + 0z_1^3 - z_1^2z_2 - 2z_1z_2^2 - z_2^3.
\]

The row eigenvectors corresponding to each of these polynomials are

\[
(1, 1, 2, -1, 0, 1, -1, -2, -1, 0)
\]

and

\[
(1, 2, 1, 1, 0, -1, 0, -1, -2, -1).
\]
Example: The row eigenvector matrix \mathbf{A} for $M = 3$ balls

So for $f_3^{(r_1, r_2)}(z_1, z_2)$, we have the row eigenvector matrix

\[
\begin{bmatrix}
1 & z_1 & z_2 & z_1^2 & z_1 z_2 & z_2^2 & z_1^3 & z_1^2 z_2 & z_1 z_2^2 & z_2^3 \\
1 & 3 & 3 & 3 & 6 & 3 & 1 & 3 & 3 & 1 \\
1 & 1 & 2 & -1 & 0 & 1 & -1 & -2 & -1 & 0 \\
1 & 2 & 1 & 1 & 0 & -1 & 0 & -1 & -2 & -1 \\
1 & -1 & 1 & -1 & -2 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & -1 & -1 & 0 & 1 & 1 & 0 \\
1 & 1 & -1 & 0 & -2 & -1 & 0 & 0 & 1 & 1 \\
1 & -3 & 0 & 3 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & -2 & -1 & 1 & 2 & 0 & 0 & -1 & 0 & 0 \\
1 & -1 & -2 & 0 & 2 & 1 & 0 & 0 & -1 & 0 \\
1 & 0 & -3 & 0 & 0 & 3 & 0 & 0 & 0 & -1 \\
\end{bmatrix}
= \mathbf{A}.
\]
Generating function and eigenvalues for d urns

Theorem

The coefficients of the functions

$$f_r^M(z) = \left(\prod_{k=1}^{d-1} (1 - z_k)^{r_k} \right) \left(1 + \sum_{k=1}^{d-1} z_k \right)^{r_d},$$

where all the components of r are nonnegative integers and $\sum_{k=1}^d r_k = M$, define a set of linearly independent eigenvectors of the M-ball d-urn transition matrix.
Generating function and eigenvalues for d urns

Theorem

The coefficients of the functions

$$f_r^M(z) = \left(\prod_{k=1}^{d-1} (1 - z_k)^{r_k} \right) \left(1 + \sum_{k=1}^{d-1} z_k \right)^{r_d},$$

where all the components of r are nonnegative integers and $\sum_{k=1}^{d} r_k = M$, define a set of linearly independent eigenvectors of the M-ball d-urn transition matrix.

Corollary

The eigenvalues of the d-urn M-ball transition matrix are

$$\lambda = \frac{d}{M(d-1)} r_d - \frac{1}{d-1} \text{ for } r_d \in \{0, \ldots, M\}. \text{ Eigenvalue } \lambda \text{ has multiplicity } \left(\frac{M(d-1)}{d}(1-\lambda)+d-2 \right).$$
Finding the inverse matrix Δ^{-1} for $d = 3$ urns
Finding the inverse matrix Δ^{-1} for $d = 3$ urns

While we cannot expect there to be a pattern in the inverse of the eigenvector matrix, a remarkable pattern emerges upon inspection.
Finding the inverse matrix Δ^{-1} for $d = 3$ urns

While we cannot expect there to be a pattern in the inverse of the eigenvector matrix, a remarkable pattern emerges upon inspection.

$d = 3, \ M = 1$:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$
Finding the inverse matrix Δ^{-1} for $d = 3$ urns

While we cannot expect there to be a pattern in the inverse of the eigenvector matrix, a remarkable pattern emerges upon inspection.

$d = 3, M = 1$:

\[
\begin{pmatrix}
1 + z_1 & +z_2 \\
1 - z_1 & +0z_2 \\
1 +0z_1 & -z_2
\end{pmatrix} \quad \frac{1}{3} \quad \begin{pmatrix}
1 + z_1 & +z_2 \\
1 -2z_1 & +z_2 \\
1 +z_1 & -2z_2
\end{pmatrix}
\]
Finding the inverse matrix \mathbb{A}^{-1} for $d = 3$ urns

This pattern suggests that the rows of the inverse matrix \mathbb{A}^{-1} are generated by

$$\tilde{f}^M_{(s_1, s_2)}(z_1, z_2) = \frac{1}{3^M} (1 - 2z_1 + z_2)^{s_1} (1 + z_1 - 2z_2)^{s_2} (1 + z_1 + z_2)^{s_3},$$

where s_1, s_2, s_3 are nonnegative integers such that $s_1 + s_2 + s_3 = M$. s_1, s_2, s_3 are the same as the r_1, r_2, r_3 used to generate the corresponding row of the original eigenvector matrix \mathbb{A}.
Finding the inverse matrix \mathbb{A}^{-1} for $d = 3$ urns

This pattern suggests that the rows of the inverse matrix \mathbb{A}^{-1} are generated by

$$\tilde{f}_{(s_1,s_2)}^M(z_1, z_2) = \frac{1}{3^M} (1 - 2z_1 + z_2)^{s_1} (1 + z_1 - 2z_2)^{s_2} (1 + z_1 + z_2)^{s_3},$$

where s_1, s_2, s_3 are nonnegative integers such that $s_1 + s_2 + s_3 = M$. s_1, s_2, s_3 are the same as the r_1, r_2, r_3 used to generate the corresponding row of the original eigenvector matrix \mathbb{A}.

This function is also a valid solution to our partial differential equation.
The d-urn inverse matrix

Theorem

The rows of the matrix A^{-1} are the coefficients of

$$
\tilde{f}_s^M(z) = \frac{1}{d^M} \left(\prod_{k=1}^{d-1} (1 - (d - 1)z_k + \sum_{i \neq k} z_i)^{s_k} \right) \left(1 + \sum_{k=1}^{d-1} z_k \right)^{M - \sum_{k=1}^{d-1} s_k},
$$

where the row corresponding to the vector s in $\tilde{f}_s^M(z)$ is in the same position as the row corresponding to r in $f_r^M(z)$.
Proof: $\tilde{f}_s^M(z)$ generates \mathbb{A}^{-1}

To prove that $\tilde{f}_s^M(z)$ generates \mathbb{A}^{-1}, let the coefficients of $f_r^M(z)$ and $\tilde{f}_s^M(z)$ be $a_{r,s}^{(M)}$ and $\frac{1}{d^M} b_{s,t}^{(M)}$, respectively, so that $\frac{1}{d^M} \mathbb{B}$ is the matrix generated by $\tilde{f}_s^M(z)$.
Proof: $\tilde{f}_s^M(z)$ generates \mathbb{A}^{-1}

To prove that $\tilde{f}_s^M(z)$ generates \mathbb{A}^{-1}, let the coefficients of $f_r^M(z)$ and $\tilde{f}_s^M(z)$ be $a_{r,s}^{(M)}$ and $\frac{1}{d^M} b_{s,t}^{(M)}$, respectively, so that $\frac{1}{d^M} \mathbb{B}$ is the matrix generated by $\tilde{f}_s^M(z)$.
Proof: \(\tilde{f}_s^M(z) \) generates \(A^{-1} \)

To prove that \(\tilde{f}_s^M(z) \) generates \(A^{-1} \), let the coefficients of \(f_r^M(z) \) and \(\tilde{f}_s^M(z) \) be \(a_{r,s}^{(M)} \) and \(\frac{1}{d^M} b_{s,t}^{(M)} \), respectively, so that \(\frac{1}{d^M} B \) is the matrix generated by \(\tilde{f}_s^M(z) \).

It is sufficient to prove that:

\[
\frac{1}{d^M} \sum_s a_{r,s}^{(M)} b_{s,t}^{(M)} = \begin{cases}
1 & \text{if } r = t, \\
0 & \text{otherwise}.
\end{cases}
\]

This condition can be proved by induction on \(M \).
Computational complexity

Using diagonalization, we can compute the n-step transition matrix P^n more efficiently. Assuming $d \ll M$,

Computational complexity

Using diagonalization, we can compute the n-step transition matrix P^n more efficiently. Assuming $d << M$,

Ordinary matrix multiplication: $\sim nM^{3(d-1)}$ operations

Diagonalization: $\sim nM^{(d-1)} + 2M^{3(d-1)}$ operations
Computational complexity

Using diagonalization, we can compute the n-step transition matrix P^n more efficiently. Assuming $d \ll M$,

Ordinary matrix multiplication: $\sim nM^3(d-1)$ operations

Diagonalization: $\sim nM^{(d-1)} + 2M^3(d-1)$ operations

<table>
<thead>
<tr>
<th>Balls</th>
<th>100</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.637</td>
<td>0.786</td>
<td>0.806</td>
</tr>
<tr>
<td>20</td>
<td>26.861</td>
<td>29.771</td>
<td>34.201</td>
</tr>
</tbody>
</table>

(Ordinary matrix multiplication)

<table>
<thead>
<tr>
<th>Balls</th>
<th>100</th>
<th>200</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.215</td>
<td>0.229</td>
<td>0.234</td>
</tr>
<tr>
<td>20</td>
<td>9.017</td>
<td>9.453</td>
<td>9.655</td>
</tr>
</tbody>
</table>

(Diagonalization)
Mixing times
Mixing times

The **total variation distance** between a probability distribution p and the stationary distribution π is given by

$$d_{TV}(p, \pi) = \frac{1}{2} \sum_i |p_i - \pi_i|.$$
Mixing times

The **total variation distance** between a probability distribution p and the stationary distribution π is given by

\[
d_{TV}(p, \pi) = \frac{1}{2} \sum_{i} |p_i - \pi_i|.
\]

The **mixing time** of a Markov chain is the minimum number of steps it takes for the total variation distance to be less than a given ϵ:

\[
t_{mix}(\epsilon) = \min\{n : d_{TV}(P^n, \pi) \leq \epsilon\}
\]
We can bound the mixing time of the Ehrenfest urn model as follows:

\[
\ln \left(\frac{1}{2\epsilon} \right) \left(\frac{1}{1 - \lambda^*} - 1 \right) \leq t_{mix}(\epsilon) \leq -\ln(\epsilon \pi_{min}) \left(\frac{1}{1 - \lambda^*} \right)
\]

where

\[
\lambda^* = 1 - \frac{d}{(d-1)M}
\]

is the second-largest eigenvalue of \(\mathbb{P} \) and

\[
\pi_{min} = \frac{1}{d^M}.
\]
Mixing times: example

Consider $d = 3$ urns, $M = 20$ balls, $\epsilon = 0.25$. If we start with all the balls in one urn, $t_{mix} = 30$.
Mixing times: example

Consider $d = 3$ urns, $M = 20$ balls, $\epsilon = 0.25$. If we start with all the balls in one urn, $t_{mix} = 30$.

The bounds on the mixing time are approximately $8 \leq t_{mix} \leq 312$.
Mixing times for the multiple-urn Ehrenfest model

Using the eigenanalysis, we can precisely quantify the mixing times for the multiple urn Ehrenfest model.
Mixing times for the multiple-urn Ehrenfest model

Using the eigenanalysis, we can precisely quantify the mixing times for the multiple urn Ehrenfest model.

Beginning with all balls in an urn, and with the choice of $\epsilon = 0.25$, we have

<table>
<thead>
<tr>
<th>M</th>
<th>$t_{\text{mix}}(\epsilon)$</th>
<th>$d_{TV}(P^n, \pi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>0.2305</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>0.2177</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>0.239</td>
</tr>
<tr>
<td>40</td>
<td>70</td>
<td>0.2407</td>
</tr>
<tr>
<td>80</td>
<td>158</td>
<td>0.2476</td>
</tr>
</tbody>
</table>
Mixing times for the multiple-urn Ehrenfest model

Using the eigenanalysis, we can precisely quantify the mixing times for the multiple urn Ehrenfest model.

Beginning with all balls in an urn, and with the choice of $\epsilon = 0.25$, we have

<table>
<thead>
<tr>
<th>M</th>
<th>$t_{\text{mix}}(\epsilon)$</th>
<th>$d_{TV}(\mathbb{P}^n, \pi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>0.2305</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>0.2177</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>0.239</td>
</tr>
<tr>
<td>40</td>
<td>70</td>
<td>0.2407</td>
</tr>
<tr>
<td>80</td>
<td>158</td>
<td>0.2476</td>
</tr>
</tbody>
</table>

When $M = 80$, the dimensions of the transition matrix \mathbb{P} are $\binom{82}{2} \times \binom{82}{2}$, or 3321×3321. Even equipped with the eigenanalysis, it took R more than 5 hours to compute the total variation distance.
Hitting times

For a Markov chain X_n, $n \geq 0$, the hitting time (or first passage time) from state r to state s is the minimum number of steps the chain takes to reach state s for the first time when the chain initially starts at state r. The expected value of such a hitting time is denoted by $\mathbb{E}_r [T_s]$, where

$$T_s = \min \{ n \geq 0 : X_n = s, X_i \neq s, \text{for all } i < n \}.$$
Hitting times
Hitting times

We have investigated the following hitting times associated with a multiple urn Ehrenfest model.
Hitting times

We have investigated the following hitting times associated with a multiple urn Ehrenfest model.

(1) How long does it take to empty a full urn?
Hitting times

We have investigated the following hitting times associated with a multiple urn Ehrenfest model.

1. How long does it take to empty a full urn?
2. How long does it take to fill a specific empty urn?
Hitting times

We have investigated the following hitting times associated with a multiple urn Ehrenfest model.

(1) How long does it take to empty a full urn?

(2) How long does it take to fill a specific empty urn?

(3) How long does it take to transfer all balls in a full urn to an empty urn?
Computing expected hitting times

General method for computing expected hitting times:
Computing expected hitting times

General method for computing expected hitting times:

\[E_r[T_s] = E[T_s | X_0 = r] \]
Computing expected hitting times

General method for computing expected hitting times:

$$\mathbb{E}_r [T_s] = \mathbb{E}[T_s | X_0 = r]$$

$$= 1 + \sum_k \mathbb{E}[T_s | X_1 = k] \times P_{r,k}$$
Computing expected hitting times

General method for computing expected hitting times:

$$\mathbb{E}_r [T_s] = \mathbb{E}[T_s | X_0 = r]$$
$$= 1 + \sum_k \mathbb{E}[T_s | X_1 = k] \times P_{r,k}$$

If we label $\tau_{r,s} = \mathbb{E}_r [T_s]$, it amounts to solve the linear system

$$\tau_{r,s} = 1 + \sum_k \tau_{k,s} \times P_{r,k},$$

and the number of unknowns $\tau_{r,s}$ equals the square of the size of the state space of the Markov chain.
Emptying a full urn, our method
Emptying a full urn, our method

Given a specific urn containing $M - k$ balls, let T_k be the first time it takes for the urn to have $M - k - 1$ balls.
Emptying a full urn, our method

Given a specific urn containing \(M - k \) balls, let \(T_k \) be the first time it takes for the urn to have \(M - k - 1 \) balls.

\[
T_k = \begin{cases}
1 & \text{with probability } \frac{M-k}{M}, \\
1 + T'_k & \text{with probability } \frac{k(d-2)}{M(d-1)}, \\
1 + T_{k-1} + T'_k & \text{with probability } \frac{k}{M(d-1)},
\end{cases}
\]

where \(T'_k \) is a random variable with the same distribution as \(T_k \).
Emptying a full urn

We find that

$$\mathbb{E}[T_k] = \frac{1}{\binom{M-1}{k}} \sum_{j=0}^{k} \binom{M}{j} \frac{1}{(d-1)^{k-j}}$$
Emptying a full urn

We find that

\[
\mathbb{E}[T_k] = \frac{1}{\binom{M-1}{k}} \sum_{j=0}^{k} \frac{\binom{M}{j}}{(d-1)^{k-j}} = M \int_{0}^{1} x^{M-k-1} \left(\frac{d-x}{d-1}\right)^k \, dx,
\]
Emptying a full urn

We find that

$$\mathbb{E}[T_k] = \frac{1}{(M-1)} \sum_{j=0}^{k} \binom{M}{j} \frac{(d-1)^{k-j}}{(d-1)^{k-j}} = M \int_{0}^{1} x^{M-k-1} \left(\frac{d-x}{d-1}\right)^k \, dx,$$

which gives us

$$\mathbb{E}_{full}[T_{empty}] = \sum_{k=0}^{M-1} \mathbb{E}[T_k]$$
Emptying a full urn

We find that

$$\mathbb{E}[T_k] = \frac{1}{\binom{M-1}{k}} \sum_{j=0}^{k} \binom{M}{j} \frac{(d-1)^{k-j}}{(d-1)^{k-j}} = M \int_{0}^{1} x^{M-k-1} \left(\frac{d-x}{d-1} \right)^k dx,$$

which gives us

$$\mathbb{E}_{full}[T_{empty}] = \sum_{k=0}^{M-1} \mathbb{E}[T_k] = M \sum_{k=0}^{M-1} \frac{\left(\frac{d}{d-1} \right)^k}{k+1}. $$
Filling an empty urn

Redefining T_k as the time to have $k + 1$ balls in an urn initially containing k balls,

$$
\mathbb{E}[T_k] = \frac{d - 1}{(M - 1)} \sum_{j=0}^{k} \binom{M}{j} (d - 1)^{k-j}.
$$
Filling an empty urn

Redefining T_k as the time to have $k + 1$ balls in an urn initially containing k balls,

$$\mathbb{E}[T_k] = \frac{d - 1}{(M-1)} \sum_{j=0}^{k} \binom{M}{j} (d - 1)^{k-j}.$$

Using the same method, we find that the expected time to fill a specific empty urn is

$$\mathbb{E}_{empty}[T_{full}] = M(d - 1) \sum_{k=0}^{M-1} \frac{d^k}{k + 1}.$$
Filling an empty urn

Redefining \(T_k \) as the time to have \(k + 1 \) balls in an urn initially containing \(k \) balls,

\[
E[T_k] = \frac{d - 1}{M - 1} \sum_{j=0}^{k} \binom{M}{j}(d - 1)^{k-j}.
\]

Using the same method, we find that the expected time to fill a specific empty urn is

\[
E_{\text{empty}}[T_{\text{full}}] = M(d - 1) \sum_{k=0}^{M-1} \frac{d^k}{k + 1}.
\]

Starting with a full urn, the time to fill any of the other urns is

\[
E_{\text{full}}[T_{\text{full_any}}] = M \sum_{k=0}^{M-1} \frac{d^k}{k + 1}.
\]
Hitting time graphical representation

blue: time to empty a specific urn
orange: time to fill a specific urn
Summary of results
Summary of results

(1) Developed a generating function f_r^M for the eigenvectors of the transition matrix P, first for the 3-urn model, then generalized for d urns. f_r^M also allows us to solve for the eigenvalues λ.
Summary of results

(1) Developed a generating function f_r^M for the eigenvectors of the transition matrix \mathbb{P}, first for the 3-urn model, then generalized for d urns. f_r^M also allows us to solve for the eigenvalues λ.

(2) Proved that \tilde{f}_s^M generates the inverse of the eigenvector matrix \mathbb{A}, both for the 3-urn model and a generalized d-urn model.
Summary of results

(1) Developed a generating function \(f_r^M \) for the eigenvectors of the transition matrix \(P \), first for the 3-urn model, then generalized for \(d \) urns. \(f_r^M \) also allows us to solve for the eigenvalues \(\lambda \).

(2) Proved that \(\tilde{f}_s^M \) generates the inverse of the eigenvector matrix \(A \), both for the 3-urn model and a generalized \(d \)-urn model.

(3) Explored an application of the eigenanalysis involving bounding the mixing time of the Ehrenfest urn model.
Summary of results

(1) Developed a generating function f_r^M for the eigenvectors of the transition matrix \mathbb{P}, first for the 3-urn model, then generalized for d urns. f_r^M also allows us to solve for the eigenvalues λ.

(2) Proved that \tilde{f}_s^M generates the inverse of the eigenvector matrix \tilde{A}, both for the 3-urn model and a generalized d-urn model.

(3) Explored an application of the eigenanalysis involving bounding the mixing time of the Ehrenfest urn model.

(4) Solved for general formulae for hitting times for various scenarios of the Ehrenfest urn model.
Works cited

