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Definition
A Belyi map is a meromorphic map from a Riemann surface X
into the extended complex plane P1(C) whose critical values are
contained in the set {0, 1,∞}.

Some Riemann Surfaces

Example

Let f : P1(C)→ P1(C) be defined by f (z) = zn.

f ′(z) = nzn−1, which is 0 at 0 and ∞ at ∞, and we can check
that f (0) = 0 and f (∞) =∞. So f is in fact a Belyi map.



Definition
A Belyi map is a meromorphic map from a Riemann surface X
into the extended complex plane P1(C) whose critical values are
contained in the set {0, 1,∞}.
Some Riemann Surfaces

Example

Let f : P1(C)→ P1(C) be defined by f (z) = zn.

f ′(z) = nzn−1, which is 0 at 0 and ∞ at ∞, and we can check
that f (0) = 0 and f (∞) =∞. So f is in fact a Belyi map.



Definition
A Belyi map is a meromorphic map from a Riemann surface X
into the extended complex plane P1(C) whose critical values are
contained in the set {0, 1,∞}.

Example

Let f : P1(C)→ P1(C) be defined by f (z) = zn.

f ′(z) = nzn−1, which is 0 at 0 and ∞ at ∞, and we can check
that f (0) = 0 and f (∞) =∞. So f is in fact a Belyi map.



Definition
A Belyi map is a meromorphic map from a Riemann surface X
into the extended complex plane P1(C) whose critical values are
contained in the set {0, 1,∞}.

Example

Let f : P1(C)→ P1(C) be defined by f (z) = zn.

f ′(z) = nzn−1, which is 0 at 0 and ∞ at ∞, and we can check
that f (0) = 0 and f (∞) =∞. So f is in fact a Belyi map.



Definition
A Belyi map is a meromorphic map from a Riemann surface X
into the extended complex plane P1(C) whose critical values are
contained in the set {0, 1,∞}.

Example

Let f : P1(C)→ P1(C) be defined by f (z) = zn.

f ′(z) = nzn−1, which is 0 at 0 and ∞ at ∞, and we can check
that f (0) = 0 and f (∞) =∞. So f is in fact a Belyi map.



Belyi’s Theorem

Theorem (Belyi, 1979)

A Riemann surface X can be defined over Q if and only if X
admits a Belyi map.

The algebraic numbers feature in a mathematical object of some
importance known as the absolute Galois group. One major
application of Belyi’s theorem is in tying the structure of Belyi
maps to the structure of the absolute Galois group.
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Dessins from Belyi maps
Given a Belyi map f : X → P1(C), we can define an embedded
bicolored graph on X :

f −1(0) := the set of black vertices

f −1(1) := the set of white vertices

f −1(∞) := the interiors of faces

f −1((0, 1)) := the set of edges



A Two-face Dessin
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A Two-faced Dessin

Define g(z) = −(z−1)2

4z . g has critical points at z = −1, 0, 1, for
critical values of 1,∞, 0 respectively, so g is in fact a Belyi map.
Its corresponding dessin has two faces.

Figure: The dessin corresponding to g
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Dessins

Definition
A dessin d’enfant (henceforth “dessin”) is a bicolored graph
embedded into a Riemann surface, whose orientation induces an
ordering of edges around the vertices.



Example



A Two-faced Dessin



But not...



Example

How the dessin is embedded into the surface also distinguishes
between dessins.



Permutation Groups: The Symmetric Group

Definition
The Symmetric Group of degree n, denoted Sn, is the set of all
bijections from {1, 2, . . . , n} to itself, with the binary operation
given by composition. Elements of Sn are called permutations.
The size, or the order of Sn is denoted |Sn| = n!.



Example

Define:

σ :

1 2 3

τ :

1 2 3

1 2 3

We can write σ and τ in cycle-notation as: σ = (1)(2, 3) and
τ = (1, 2)(3).
Their product is στ = τ ◦ σ = (1, 2, 3) in cycle notation.



Even and Odd Permutations

Permutations can be even or odd, like the integers. One
visualization is that a permutation is odd if the number of
crossings in its diagram is odd (and likewise for an even
permutation). For example, σ and τ from the previous slide are
odd, and their product (1, 2, 3) is even.

Even and odd permutations behave like even and odd numbers:
namely, the composition of two even or two odd permutations is
an even permutation, and the composition of one odd and one
even permutation is an odd permutation.



Permutation Groups

Definition
A Permutation Group is a subgroup of Sn: it is a nonempty
subset H ⊆ Sn which is closed under products and inverses. That
is, for σ, τ ∈ H, στ ∈ H and σ−1, τ−1 ∈ H.

Example

The subset H = {id, (1, 2, 3), (1, 3, 2)} defines a subgroup of S3,
where id = (1)(2)(3).



The Alternating Group

The set of all even permutations inside Sn also forms a subgroup!
We call this the alternating group, and denote it by An.

For example, A4 consists of the permutations: (1, 2, 3), (1, 3, 2),
(1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3), (1, 2)(3, 4),
(1, 3)(2, 4), (1, 4)(2, 3), and id.



Permutation Groups: Generating Sets

An arbitrary subset of Sn need not be a subgroup. For example,
the set {(1, 2, 3)} is closed under neither inverses nor products.

What if we add in all of its powers? Then we get the subset
H = {id, (1, 2, 3), (1, 3, 2)} from the previous slide, which is a
subgroup of S3.

In general, given a subset X ⊆ Sn, we denote by 〈X 〉 the subgroup
“generated by X”, which is the smallest subgroup of Sn that
contains X .

For example, H = 〈(1, 2, 3)〉.



Edgy Permutations

The labeling of the edges of the dessin allows us to define
permutations in Sn corresponding to a dessin:

σB := the permutation which rotates edges counterclockwise

about the black vertices

σW := the permutation which rotates edges counterclockwise

about the white vertices



Example

For the following dessin,

σB = (1, 3, 2) (4, 7, 5)

σW = (3, 4) (5, 6)



Monodromy Group

Definition
The monodromy group of a dessin is G := 〈σB , σW 〉, where σB
and σW are the two permutations corresponding to the dessin.

The monodromy group is a subgroup of the symmetric group, and
for connected dessins, this subgroup is transitive: for any numbers
x , y ∈ {1, 2, . . . , n}, there is some permutation σ ∈ G such that
σ(x) = y .

We sometimes denote the monodromy group of a dessin D by
Mon (D).



Example

For this dessin, σB = (1, 2, 3, 4, 5, 6, 7, 8), σW = id, and thus
G = 〈(1, 2, 3, 4, 5, 6, 7, 8)〉 ∼= Z8, the cyclic group of order 8.



A musing on the monodromy group

Determining the monodromy group of a given dessin is not so easy
in general. For example, suppose we added an edge to the 8-star
from before.

Now σB = (2, 3, 4, 5, 6, 7, 8, 9) and σW = (1, 2) so that G = S9



Motivation behind composition

Cayley’s theorem tells us that every group is isomorphic to a
subgroup of some symmetric group. So each of our monodromy
groups sits inside some symmetric group Sn (where n is the
number of edges in the dessin).
However, the order of Sn grows pretty fast (like n! fast!), so it
becomes difficult to determine these subgroups.



Motivation behind composition

Is there a way to decompose a dessin into smaller, more familiar
dessins in order to work with nicer monodromy groups which sit
inside smaller symmetric groups?

Of course there is!
How does this decomposition reflect in the monodromy group of
the original dessin?
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Composition
We can construct trees with a composition process given by
Adrianov and Zvonkin:

I Start with two trees, P and Q, pictured below:

Figure: P on the left, Q on the right.



Composition
We can construct trees with a composition process given by
Adrianov and Zvonkin:

I We begin the composition P ◦ Q by first distinguishing two
vertices of P: label them a square and a triangle.

Figure: P: pick two vertices to be the square and triangle.



Composition
We can construct trees with a composition process given by
Adrianov and Zvonkin:

I Mark every black vertex of Q with a square and similarly every
white vertex of Q with a triangle.

Figure: Q: change black vertices to squares and whites to triangles.



Composition
We can construct trees with a composition process given by
Adrianov and Zvonkin:

I Finally, replace every edge of Q with the tree P, matching the
square vertex of P to the square vertex of that edge, and
likewise for the triangles.

Figure: Q: change black vertices to squares and whites to triangles.



Example

Figure: P, Q, and P ◦ Q respectively



Composition

This process is significant to us because
Mon (P ◦ Q) ≤ Mon (Q) oMon (P) [A. Zvonkin].

This is a consequence of the Krasner-Kaloujnine Embedding
Theorem, which states that if a group G is an extension of H by
N, it is isomorphic to a subgroup of the wreath product H o N.



Wreath Products: a Formal Definition

So, what’s a wreath product?

Definition
Let G and H be groups, let n be a positive integer and define a
homomorphism ϕ : G → Sn. Have K be the direct product of n
copies of H.
If ψ : Sn → Aut(K ) is an injective homomorphism which lets the
elements of Sn permute the n factors of K and φ = ψ ◦ ϕ is a
homomorphism from G into Aut(K ) we say that the wreath
product of H by G is the semi-direct product K o G with respect
to φ and is denoted H o G .
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Wreath Products
Ok, so what’s a wreath product?

Consider S4 o S3 as a representation of an order of three group
presentations, each of which has four members (with the
assumption that the members each speak just once).

The first thing in the wreath product corresponds to group
members: within each group, the members are free to speak in any
order.

The second thing corresponds to the number of groups, ordering
the groups into those presenting first, second, and third.
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Example
Consider the wreath product S3 o Z2.

What do its elements look like? A pair of permutations, along with
an element of Z2. For example, for σ, τ ∈ S3, both (σ, τ, 0) and
(σ, τ, 1) are in S3 o Z2.

How do we multiply them? The multiplication is component-
by-component, but if the last component of the second is a 1, we
switch the components of the first before multiplying. For example:

(σ, τ, 0) · (σ, τ, 1) = (τσ, στ, 1) while

(σ, τ, 1) · (σ, τ, 0) = (σ2, τ2, 1).



Wreath Products: A Remark about Embedding

Given a wreath product Sn o Zm, the wreath product will embed
naturally into a symmetric group of degree mn.

For example, S3 o Z2 embeds as
〈(1, 2), (1, 2, 3), (4, 5), (4, 5, 6), (1, 4)(2, 5)(3, 6)〉 (note that
S3 = 〈(1, 2), (1, 2, 3)〉).

That is, we partition the set {1, . . . ,mn} into m sets of size n, and
envision one copy of Sn acting on each set. The final ingredient is
the wreath element (id, . . . , id, 1) which cycles between the copies.



Cleaning

One particular composition which is fairly well studied in the
literature is known as cleaning, which is composition with a dessin
of the following form:

Figure: The 2-star which we plug into the edges of our dessin. For some
mysterious reason, it is labeled with “blank” and “bar”.

Given a dessin, its cleaned form is a dessin where every original
vertex is colored black, and a white vertex is inserted on every edge.



Some Clean Dessins

Figure: A dessin freshening up before its date.



Some Clean Dessins

Figure: Here are some dessins before / after cleaning.
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Cleaning is Nice!

Figure: A pre-cleaning dessin.

σB = (1, 2, 3)

σW = (3, 4, 5, 6)

This dessin has monodromy group S6!



Cleaned Dessin

Figure: The cleaned dessin.

σB = (1, 2, 3)(3, 4, 5, 6)

σW = (1, 1)(2, 2) · · · (6, 6)

This dessin has monodromy group S6 o Z2.



The Clean Embedding in General

In general, given a dessin D with permutations πB and πW around
the black and white vertices respectively, the generators of the
cleaned dessin embed into the wreath product Mon (D) o Z2 as
follows:

σB 7−→ (πB , πW , 0)

σW 7−→ (id, id, 1)



k-cleaning

One natural question is whether we can compose with a tree larger
than the 2-star but still preserve the nice embedding, where σB has
cycles only between “blanks” or “bars” and σW cycles between all
the different forms of one number.
We can do this via a composition we call k-cleaning!



k-cleaning

Definition
A dessin (tree) is k-cleaned if it is the result of a composition
with a k-star, where the square and the triangle are both children
of the central vertex.

Figure: One possible 5-star



k-cleaning

We can check that k-cleaning is still nice:

I σW still cycles through the alter egos of a single number:
because a white vertex corresponds to exactly one edge of the
original dessin, and because composition preserves ordering,
σW will be a product of k-cycles, one for every edge.

I σB is still the product of the two original cycles, each between
only one type (e.g. “blanks” or “bars”)
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We can check that k-cleaning is still nice:

I σW still cycles through the alter egos of a single number:
because a white vertex corresponds to exactly one edge of the
original dessin, and because composition preserves ordering,
σW will be a product of k-cycles, one for every edge.

I σB is still the product of the two original cycles, each between
only one type (e.g. “blanks” or “bars”)



k-cleaning Embedding

In general, a k-star can have 0 ≤ j ≤ k − 2 edges below the path
from square to triangle.
The embedding for k-cleaning with a k-star that has j edges below
the path from square to triangle is:

σB 7−→ (σ1, id, . . . , id, σ2, id, . . . , id, 0)

σW 7−→ (id, . . . , id, 1)

where σ2 is in the (j + 2)th component.



Applications of k-cleaning



Algebra Lemma

Lemma
Suppose that σ0, σ1 ∈ Sn with 〈σ0, σ1〉 ≥ An with n ≥ 5. Let
k ≥ 2, and define x1 = (σ0, σ1, id, . . . , id), . . . , xk−1 =
(id, . . . , id, σ0, σ1), xk = (σ1, id, . . . , id, σ0) ∈ Sk

n , and
G = 〈x1, . . . , xk〉. If k > 2, G must contain Ak

n . If k = 2, the same
claim holds as long as |σ0| 6= |σ1|.

Proof sketch.
We show that under the given assumptions, there exist elements of
the form ρ = (id, . . . , id, ρi , id, . . . , id) where ρi 6= id. For example,
if k = 2 and r = |σ0| 6= |σ1| = t, then x t1 = (σr0, id, . . . , id).
We then look at all conjugates of this element (permutation-tuples
which are of the form τ−1ρτ) and show that G must contain a
conjugacy class, and hence must be normal.
It must thus contain at least id× id× An × id× · · · × id for each
component, from which it follows that Ak

n ≤ G .



A 2-cleaned dessin with unique degree sequence

Figure: Dessin D with degree sequence: [r , t, 1r+t−2; 2r+t−1]; here, r = 3,
t = 4.

The embedding gives that:

σB 7−→ ((1, 2, 3), (3, 4, 5, 6), 0)

σW 7−→ (id, id, 1)



2-cleaned dessin (cont.)

Taking σ0 = (1, 2, 3) and σ1 = (3, 4, 5, 6), we see that x1 = σB ,
x2 = σ−1

W σBσW , and the lemma immediately gives that
A6 o Z2 ≤ Mon (D).

A quick check via the embedding verifies that both the first and
second components independently contain odd permutations,
which lets us conclude that Mon (D) ∼= S6 o Z2.



A 3-cleaned dessin with unique degree sequence

Figure: Dessin D with degree sequence: [r2, 14r−3; 32r−1]; here, r = 3.

The embedding gives that:

σB 7−→ ((1, 2, 3), (3, 4, 5), id, 0)

σW 7−→ (id, id, id, 1)



3-cleaned dessin (cont.)

Again, applying the lemma with σ0 = (1, 2, 3), σ1 = (3, 4, 5) and
k = 3 immediately gives A6 o Z3 ≤ Mon (D).

In this case, as both σ0 and σ1 are even, the other containment
gives A6 o Z3

∼= Mon (D).
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I A check through the list of degree sequences corresponding to
exactly two trees given by Adrianov (2009) reveals that six of
twelve correspond to k-cleaned trees. The lemma can
probably be used to compute monodromy groups for many of
these cases.

I Extending the lemma to other simple groups (other than An),
as well as for non-simple groups, which the proof suggests
should have monodromy groups which are normal.

I The monodromy group of a composition is not in general the
full wreath product of the monodromy groups of its factors.
k-cleaning gives some examples of both monodromy groups
which are proper subgroups of the wreath product and ones
which are the full wreath product, and may help determine
some conditions under which the monodromy group is a
proper subgroup.
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