3. (a) \(\lim_{x \to -3} f(x) = \infty \) means that as \(x \) gets closer to \(-3\) from either side, \(f(x) \) gets larger and larger, increasing without bound.

(b) \(\lim_{x \to 4} f(x) = \infty \) means that as \(x \) gets closer to \(-3\) from the right, the graph of \(f \) goes down farther and farther, decreasing without bound. It gives us no information as to what is happening to the left of 4.

4. (a) This limit is 2 since the graph passes smoothly through \((0, 2)\).

(b) This limit is 4 since the graph rises up to 4 from the left and we ignore what is happening to the right of \(x = 2 \).

(c) This limit is 2 since the \(y \)-values on the graph approach 2 if we come in from the right, and we ignore what is happening to the left of \(x = 3 \).

(d) This limit does not exist since the left- and right-hand limits do not agree.

(e) \(f(3) = 3 \).

6. (i) The limit from the left does not exist since there is no single value that the function approaches as \(x \) nears 5 from the left; instead, it appears to range infinitely often between 2 and 4.

8. (a) \(\lim_{x \to 2} R(x) = -\infty \) since the left- and right-hand sides both drop down without bound near \(x = 2 \). Note that the limit does not exist; we are just specifying the manner in which it fails to exist.

(b) \(\lim_{x \to 5} R(x) = \infty \); see (a).

(c) \(\lim_{x \to -3^{-}} R(x) = -\infty \).

(d) \(\lim_{x \to -3^{+}} R(x) = \infty \).

(e) The vertical asymptotes are \(x = -3, x = 2, \) and \(x = 5 \).

18. I will just do the closest ones. \(-0.999 : \frac{(-0.999)^2 - 2(-0.999)}{(-0.999)^2 - (-0.999) - 2} = -999\). Coupled with the others you calculated, it looks like this is going to \(-\infty\). \(-1.001 : \frac{(-1.001)^2 - 2(-1.001)}{(-1.001)^2 - (-1.001) - 2} = 1001\). This appears to be approaching \(\infty \). The limit does not exist.

21. I will try \(x = 0.001 \) and \(x = -0.001 \) and look at a graph. \(x = 0.001 : \frac{\sqrt{0.001 + 4} - 2}{0.001} \approx 0.249984 \). \(x = -0.001 : \frac{\sqrt{-0.001 + 4} - 2}{-0.001} \approx 0.250016 \). It looks like the limit is \(\frac{1}{4} \), and the graph seems to agree with this.
25. If $x > -3$ (as is the case when $x \to -3^+$), then $x + 3$ is positive, and so is $\frac{x + 2}{x + 3}$. Therefore,
\[
\lim_{x \to -3^+} \frac{x + 2}{x + 3} = \infty.
\]

40. If $v < c$, then $\frac{v^2}{c^2} < 1$. As $v \to c^-$, however, $\frac{v^2}{c^2} \to 1^-$. Thus, the denominator is going to zero, but the numerator is not. This causes an infinite limit. Since the numerator and denominator are both positive, the limit is ∞. Physically, this means that as we try to accelerate the particle to the speed of light, its mass has to grow without bound. That’s silly! (We think...)