1. The general solution is \(y = c_1 \cos x + c_2 \sin x \). Since \(y(0) = 0 \), we require \(c_1 = 0 \). Since \(y'(\pi) = 1 \), we require \(c_2(-1) = 1 \), so \(c_2 = -1 \). We therefore have the unique solution \(y(x) = -\sin x \).

2. The general solution is \(y = c_1 \cos \sqrt{2}x + c_2 \sin \sqrt{2}x \). \(y' = -\sqrt{2}c_1 \sin \sqrt{2}x + \sqrt{2}c_2 \cos \sqrt{2}x \). Since \(y'(0) = 1 \), we require \(\sqrt{2}c_2 = 1 \); thus, \(c_2 = \frac{1}{\sqrt{2}} \). Since \(y'(\pi) = 0 \), we require \(-\sqrt{2}c_1 \sin \sqrt{2}\pi + \cos \sqrt{2}\pi = 0 \); therefore, \(c_1 = \frac{1}{\sqrt{2}} \cos \sqrt{2}\pi \). The general solution is \(y(x) = \frac{1}{\sqrt{2}} \cot \sqrt{2}\pi \cos \sqrt{2}x + \frac{1}{\sqrt{2}} \sin \sqrt{2}x \).

3. The general solution is \(y(x) = c_1 \cos x + c_2 \sin x \). Since \(y(0) = 0 \), we have \(c_1 = 0 \). Since \(y(L) = 0 \), we have \(c_2 \sin L = 0 \). This has no nontrivial solution if \(L \neq n\pi \) for some integer \(n \), and it has the nontrivial solution \(c_2 \sin x \) if \(L = n\pi \) for some integer \(n \).

4. This has the same general solution as Number 3. Since \(y'(0) = 1, c_2 = 1 \). Thus \(y(x) = c_1 \cos x + \sin x \). \(y(L) = c_1 \cos L + \sin L = 0 \), so \(c_1 = -\tan L \) unless \(\cos L = 0 \). If \(\cos L = 0 \), then \(\sin L \neq 0 \), so there is no solution. In the first case, the solution is \(y(x) = -\tan L \cos x + \sin x \).

5. We have \((D^2 + 1)D^2y = 0\), which has general solution \(c_1 + c_2x + c_3 \cos x + c_4 \sin x \). The sine and cosine are solutions of the corresponding homogeneous equation, so we just have \(y_p(x) = c_1 + c_2x \). This gives \(y''_p = 0 \), so \(0 + c_1 + c_2x = x \). Therefore, \(c_1 = 0 \) and \(c_2 = 1 \).

We have \(y(x) = x + c_3 \cos x + c_4 \sin x \). Since \(y(0) = 0 \), this means \(c_3 = 0 \). The condition \(y(\pi) = 0 \) then implies that \(\pi = 0 \), so there is no solution. (But we got a nice review!)

6. We have \((D^2 + 2)D^2y = 0\), so the solution has the form \(c_1 + c_2x + c_3 \cos x + c_4 \sin x \). The solutions of the corresponding homogeneous equation are \(\sin \sqrt{2}x \) and \(\cos \sqrt{2}x \), so \(y_p = c_1 + c_2x \) and \(y''_p = 0 \). We get \(2(c_1 + c_2x) = x \), so \(c_1 = 0 \) and \(c_2 = 1/2 \). Now \(y(x) = \frac{1}{2} x + c_3 \cos \sqrt{2}x + c_4 \sin \sqrt{2}x \).

\(y(0) = 0 \), so \(c_3 = 0 \). \(y(\pi) = 0 = \frac{\pi}{2} + c_4 \sin(\sqrt{2}\pi) \). Thus \(c_4 = -\frac{\pi}{2 \sin \sqrt{2}\pi} \). Therefore, \(y(x) = \frac{1}{2} x - \frac{\pi}{2 \sin \sqrt{2}\pi} \sin(\sqrt{2}x) \).

7. We have \((D^2 + 4)(D^2 + 1)y = 0\), giving a solution of the form \(c_1 \cos 2x + c_2 \sin 2x + A \cos x + B \sin x \). The \(\cos 2x \) and \(\sin 2x \) terms solve the corresponding homogeneous equation, so \(y_p = A \cos x + B \sin x \) and \(y''_p = -A \cos x - B \sin x \). Therefore,

\[
\cos x = y''_p + 4y_p = 3A \cos x + 3B \sin x.
\]

This gives \(A = \frac{1}{3} \) and \(B = 0 \), so \(y(x) = \frac{1}{3} \cos x + c_1 \cos 2x + c_2 \sin 2x \).

Now \(y(0) = 0 \), so \(\frac{1}{3} + c_1 = 0 \), and \(c_1 = -\frac{1}{3} \). \(y(\pi) = 0 \), as well, so \(-\frac{1}{3} + c_1 = 0 \), and \(c_1 = \frac{1}{3} \). Uh-oh! This has no solution.

8. We may reuse most of our work from the last problem; the only difference is that \(A = 0 \) and \(B = \frac{1}{3} \).

Thus \(y(x) = \frac{1}{3} \cos x + c_1 \cos 2x + c_2 \sin 2x \).

Now \(y(0) = 0 \), so \(c_1 = 0 \), and \(c_1 = \frac{1}{3} \). \(y(\pi) = 0 \), as well, so \(-\frac{1}{3} + c_1 = 0 \), and \(c_1 = \frac{1}{3} \). Uh-oh! This has no solution.

9. We may reuse our work from Number 7: \(y(x) = \frac{1}{3} \cos x + c_1 \cos 2x + c_2 \sin 2x \).

Since \(y'(0) = 0 \), we have \(c_2 = 0 \). Since \(y'(\pi) = 0 \), we have again that \(c_2 = 0 \). Therefore, the solution is \(y(x) = \frac{1}{3} \cos x + c_1 \cos 2x \), and again there are infinitely many solutions.
10. We may again borrow from earlier work; we just replace the 2’s in the prior problems with $\sqrt{3}$’s and the $\frac{1}{3}$ with a $\frac{1}{2}$:
$$y(x) = \frac{1}{2} \cos x + c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x.$$
Now $y'(0) = 0$ implies that $c_2 = 0$. $y'(\pi) = 0$ implies that $-c_1 \sqrt{3} \sin \sqrt{3}\pi = 0$, so $c_1 = 0$ as well. Thus $y(x) = \frac{1}{2} \cos x$.

11. Assume first that $\lambda > 0$. The general solution is $y(x) = c_1 \cos \sqrt{\lambda}x + c_2 \sin \sqrt{\lambda}x$. With $y(0) = 0$, we have $c_1 = 0$. With $y'(\pi) = 0$, we have $\sqrt{\lambda} c_2 \cos(\sqrt{\lambda}\pi) = 0$. In order to get a nontrivial solution, we need to have $\sqrt{\lambda}\pi = \frac{(2n + 1)\pi}{2}$ for some integer n. Thus, the eigenvalues are $\frac{(2n + 1)^2}{4}$ for n a nonnegative integer. The corresponding eigenfunctions are $y_n(x) = c_2 \sin \frac{2n + 1}{2}x$.

If $\lambda = 0$, we have $y'' = 0$, so $y = c_1 + c_2x$. This cannot satisfy the boundary conditions, so $\lambda = 0$ is not an eigenvalue.

If $\lambda < 0$, we have $y(x) = c_1 e^{\sqrt{\lambda}x} + c_2 e^{-\sqrt{\lambda}x}$. It is not hard to see that the only solution of this form is the trivial solution.

12. For $\lambda > 0$, the general solution is $y(x) = c_1 \cos \sqrt{\lambda}x + c_2 \sin \sqrt{\lambda}x$. With $y'(0) = 0$, we have $c_2 = 0$. With $y(\pi) = 0$, we have $c_1 \cos \sqrt{\lambda}\pi = 0$. To get a nontrivial solution, we must have $\sqrt{\lambda}\pi = \frac{(2n + 1)\pi}{2}$ for some integer n. Thus, the eigenvalues are $\frac{(2n + 1)^2}{4}$ for n a nonnegative integer. The corresponding eigenfunctions are $y_n(x) = c_1 \cos \frac{2n + 1}{2}x$.

Again, there are no negative eigenvalues and zero is not an eigenvalue.

13. For $\lambda > 0$, the general solution is $y(x) = c_1 \cos \sqrt{\lambda}x + c_2 \sin \sqrt{\lambda}x$. With $y'(0) = 0$, we have $c_2 = 0$. With $y'(\pi) = 0$, we have $-c_1 \sqrt{\lambda} \sin \sqrt{\lambda}\pi = 0$. To get a nontrivial solution, we must have $\sqrt{\lambda}\pi = n\pi$ for some integer n. Thus, the eigenvalues are n^2 for n a positive integer. The corresponding eigenfunctions are $y_n(x) = c_1 \cos nx$.

If $\lambda = 0$, then $y(x) = c_1 + c_2x$, so $y'(0) = 0$ implies that $c_2 = 0$. Now $y(x) = c_1$ will also satisfy $y'(\pi) = 0$, so $y(x) = c_1$ is an eigenfunction for the eigenvalue 0.