1. If \(p(x) \) and \(q(x) \) are constant polynomials, so are \(p(x) - q(x) \) and \(p(x)q(x) \); thus, \(K \) is a subring. However, since \(x \cdot 1 = x \notin K \) even though \(1 \in K \), \(K \) is not an ideal.

3. (a) Let \((k,0),(l,0) \in I\). Then \((k,0) - (l,0) = (k - l,0) \in I\) and \((k,0)(l,0) = (kl,0) \in I\). Therefore, \(I \) is an ideal of \(\mathbb{Z} \times \mathbb{Z} \).

 (b) Since \((1,1) \in T\) but \((1,2)(1,1) = (1,2) \notin T\), \(T \) is not an ideal.

7. (a) \((0) = \{0\}, (1) = \mathbb{Z}_5 = \{2\} = (3) = (4) \). (This illustrates a general principle: if \(F \) is a field, then the only ideals of \(F \) are \{0\} and \(F \).

 (b) \((0) = \{0\}, (1) = \mathbb{Z}_9 = \{2\} = (4) = (5) = (7) = (8), (3) = (6) = \{0,3,6\} \).

 (c) \((0) = \{0\}, (1) = \mathbb{Z}_{12} = (5) = (7) = (11), (2) = (10) = \{0,2,4,6,8,10\}, (3) = (9) = \{0,3,6,9\}, (4) = (8) = \{0,4,8\}, (6) = \{0,6\} \). Notice that \((m) = (\gcd(m,12)) \).

12. Notice that if \(m \in (n) \), then \((m) \subseteq (n) \) by closure.

 (a) For each \(m \in \mathbb{Z} \), \((m) = (-m) \). Thus \((1) = \mathbb{Z} = (-1) \) even though \(1 \neq -1 \).

 (b) We did this one in class.

 (c) Since \(6,9,15 \in (3), (6,9,15) \subseteq (3) \). Since \(9 - 6 = 3,3 \in (6,9,15) \), so \((3) \subseteq (6,9,15) \). Thus \((3) = (6,9,15) \).

15. (a) If \(a, b \in I \cap J \), then \(a, b \in I \) and \(a, b \in J \). Thus \(a - b \in I \) and \(a - b \in J \) since \(I \) and \(J \) are ideals, so \(a - b \in I \cap J \). If \(r \in R \), then \(ra \in I \) and \(rb \in J \) since \(I \) and \(J \) are ideals, so \(ra \in I \cap J \). Therefore, \(I \cap J \) is an ideal.

 (b) Let \(a, b \in \bigcap_k I_k \), and let \(r \in R \). Then \(a, b \in I_k \) for each \(k \), so \(a - b \in I_k \) and \(ra \in I_k \) for each \(k \) since \(I_k \) is an ideal. Therefore, \(a - b, ra \in \bigcap_k I_k \), so \(\bigcap_k I_k \) is an ideal.

16. \((2) \cup (3) \) is not a subring since \(2 + 3 = 5 \) is in neither \((2) \) nor \((3) \).

17. Let \(a, b \in I \cap S \) and let \(r \in S \). Then \(a, b \in I \) and \(a, b \in S \), so \(a - b \in I \) and \(a - b \in S \). Thus \(a - b \in I \cap S \). Also, since \(I \) is an ideal, \(ra \in I \). Since \(S \) is a subring and \(r, a \in S \), \(ra \in S \), too. Therefore, \(ra \in I \cap S \), so \(I \) is an ideal of \(S \).

18. Since \(0 \in I \) and \(0 \in J \), \(I, J \subseteq I + J \). Now let \(x, y \in I + J, r \in R \). Then \(x = a + b \) and \(y = c + d \) for some \(a, c \in I \) and \(b, d \in J \). Thus \(x - y = (a - c) + (b - d) \in I + J \) since \(a - c \in I \) and \(b - d \in J \) by closure of \(I \) and \(J \) under subtraction. Also, \(rx = r(a + b) = ra + rb \in I + J \) since \(ra \in I \) and \(rb \in J \) (because \(I \) and \(J \) are ideals).

27. We know from exercise 15 that \((m) \cap (n) \) is an ideal. Suppose that \(d \in (m) \cap (n) \). Then \(m|d \) and \(n|d \). Since \(m \) and \(n \) are relatively prime, this implies that \(mn|d \). (See exercise 17 of Section 1.2.) Thus \(d \in (mn) \), so \((m) \cap (n) \subseteq (mn) \). Conversely, if \(d \in (mn) \), then \(mn|d \), so \(m|d \) and \(n|d \). Therefore, \(d \in (m) \cap (n) \). This gives us \((m) \cap (n) = (mn) \) if \((m,n) = 1 \).

35. This is the converse of my remark in 7(a). Let \(a \in R, a \neq 0_R \). Then \(a \in (a) \), so \((a) \neq (0_R) \). Thus, by assumption, \((a) = R \). Since \(R \) has a unity \(1_R \), \(1_R \in (a) \). That is, there exists \(b \in R \) such that \(ab = 1_R \). Therefore, \(a \) has a multiplicative inverse in \(R \). Since we already know that \(R \) is a commutative ring with identity, \(R \) is in fact a field.