2. Let \(\phi : F \rightarrow R \) be a homomorphism, and let \(S \) be the image of \(\phi \). Let \(K \) be the kernel of \(\phi \). If \(S = \{0_R\} \), then we are done. Assume that \(S \neq \{0_R\} \). Since \(\ker \phi \) is an ideal and \(F \) is a field, the kernel is either \(\{0_F\} \) or \(F \) itself. However, if the kernel is \(F \) itself, then every element of \(F \) is mapped to \(0_R \); i.e., the image of \(\phi \) would be \(\{0_R\} \). Since this is not the case, the kernel must be \(\{0_F\} \), so \(\phi \) is one-to-one. Now \(F/\ker \phi \cong S \) by the first isomorphism theorem. But since \(F \cong F/\{0_F\} \), we have \(F \cong S \), as desired.

5. This need not be true. For example, \(\mathbb{Z} \) is an integral domain and \((6)\) is an ideal of \(\mathbb{Z} \), but \(\mathbb{Z}/(6) \cong \mathbb{Z}/6 \) is not an integral domain.

7. (a) \(T \) is a subring of \(\mathbb{Z} \) and \(I = (6) \) is an ideal in \(\mathbb{Z} \), so by Exercise 17 of 6.1, \(I \) is an ideal in \(T \). (You could also prove this directly.)

(b) The elements of \(T/I \) are \(0 + I \) and \(3 + I \) since \(6 + I = 0 + I \), etc. Here are the tables:

<table>
<thead>
<tr>
<th></th>
<th>(0 + I)</th>
<th>(3 + I)</th>
<th>(0 + I)</th>
<th>(3 + I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 + I)</td>
<td>(0 + I)</td>
<td>(3 + I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3 + I)</td>
<td>(3 + I)</td>
<td>(0 + I)</td>
<td>(3 + I)</td>
<td></td>
</tr>
</tbody>
</table>

The multiplicative identity is \(3 + I \). The only nonzero element is \(3 + I \), and it has an inverse (itself). Thus, \(T/I \) is a field. Notice that it is isomorphic to \(\mathbb{Z}_2 \).

9. Define \(\phi : R \rightarrow R \) by \(\phi(r) = r \) for all \(r \in R \). \(\phi \) is clearly surjective and \(\ker \phi = \{0_R\} \), so by the first isomorphism theorem, \(R/(0_R) \cong R \).

14. Let \(x + I, y + I \in R/I \). Then \(xy - yx \in I \), so \(xy - yx = i \) for some \(i \in I \). Thus \(xy = yx + i \), so \(xy \notin yx + I \). We also know that \(xy \in yx + I \). Since the cosets \(xy + I \) and \(yx + I \) are not disjoint, they must be equal. Now \((x + I)(y + I) = (xy + I) \), so \(R/I \) is commutative.

23. Define \(\phi : \mathbb{Z}_{20} \rightarrow \mathbb{Z}_5 \) by \(\phi([n]_{20}) = [n]_5 \). We must show first that \(\phi \) is well-defined: if \([m]_{20} = [n]_{20} \), then \(20|m - n \), so \(5|m - n \) as well. Thus \([m]_5 = [n]_5 \), and \(\phi([m]_{20}) = \phi([n]_{20}) \). \(\phi \) is also a surjective homomorphism: if \([n]_5 \in \mathbb{Z}_5 \), then \(\phi([n]_{20}) = [n]_5 \), and \(\phi([m]_{20} + [n]_{20}) = \phi([m + n]_{20}) = [m + n]_5 \). \(\phi \) is a well-defined homomorphism. Finally, if \(\phi([n]_{20}) = [0]_5 \), then \([n]_5 = [0]_5 \), so \(\phi([n]_{20}) = [5k]_{20} \) for some \(k \in \mathbb{Z} \). Thus \(\ker \phi \subseteq ([5]_{20}) \). Conversely, if \([n]_{20} \in ([5]_{20}) \), then \([n]_{20} = [5k]_{20} \), so \(\phi([n]_{20}) = [5k]_5 = [0]_5 \). Therefore, \(\ker \phi = ([5]_{20}) \).

By the First Isomorphism Theorem, \(\mathbb{Z}_{20}/([5]_{20}) \cong \mathbb{Z}_5 \).

For Exercises 28-31, I will find a homomorphism between the given rings whose kernel is \(I \).

28. Define \(\phi : S \rightarrow \mathbb{Z}_2 \) by \(\phi([m]/n) = [m]_2 \), where \(m/n \) is in lowest terms. Then \(\phi \) is well-defined since only one representative for each fraction is in lowest terms. (That is, if \(a/b = c/d \) with \(a/b \) and \(c/d \) in lowest terms, then \(a = c \) and \(b = d \).) Clearly \(\phi \) is surjective. Let \(a/b, c/d \in S \), and let \(q = \gcd(b, d) \).

Then \(\phi(a/b + c/d) = \phi\left(\frac{ad' + bd'}{bdq}\right) = [ad' + bd'] = [a] + [c] = \phi(a/b) + \phi(c/d) \).

Recall that \(b \) and \(d \) are odd by the definition of \(S \), so \([b] = [d'] = [d] \). (Before we could apply \(\phi \), we needed to get the gcd out of there so that our fraction was in lowest terms). We also get \(\phi\left(\frac{a}{b}\right) = \phi\left(\frac{ac}{bd}\right) = [ac] = [a] + [c] = \phi(a/b) + \phi(c/d) \).

Thus, \(\phi \) is a homomorphism. Finally, \(\ker \phi = I \) (\(\phi([m]/n) = [0]_2 \) \(\Leftrightarrow \) \(m \) is even), so \(S/I \cong \mathbb{Z}_2 \) by the First Isomorphism Theorem.

29. This is a generalization of Exercise 28. Please excuse any cut-and-paste errors.

Define \(\phi : T \rightarrow \mathbb{Z}_p \) by \(\phi(m/n) = [m \cdot n^{-1}]_p \), where \(m/n \) is in lowest terms and \(n^{-1} \) is the multiplicative inverse of \(n \) mod \(p \), which exists since \((p, n) = 1 \). Then \(\phi \) is well-defined since only one representative for
Define. This is a generalization of Exercise 30. Please excuse any cut-and-paste errors.

31. Define $\phi : T \to \mathbb{R}$ by $\phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = a$. ϕ is clearly surjective. (If $a \in \mathbb{R}$, then $\phi \left(\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \right) = a$.) ϕ is also well-defined since each such matrix has a unique representation.

We also get $\phi \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = \phi \left(\begin{bmatrix} ac & ad + bc \\ 0 & ac \end{bmatrix} \right)$, so the kernel is I. Thus, by the First Isomorphism Theorem, $T/I \cong \mathbb{R}$.

32. This is a generalization of Exercise 30. Please excuse any cut-and-paste errors.

Define $\phi : T \to \mathbb{R} \times \mathbb{R}$ by $\phi \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = (a, c)$. ϕ is clearly surjective. (If $(x, y) \in \mathbb{R}$, then $\phi \left(\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \right) = (x, y)$.) ϕ is also well-defined since each such matrix has a unique representation.

We also get $\phi \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = \phi \left(\begin{bmatrix} ac & ad + bf \\ 0 & cf \end{bmatrix} \right)$, so the kernel is I. Thus, by the First Isomorphism Theorem, $S/I \cong \mathbb{R} \times \mathbb{R}$.

33. This is a generalization of Exercise 30. Please excuse any cut-and-paste errors.