1. If \(n \) is composite, then \(n = ab \) for some \(a, b \in \mathbb{Z}, 1 < a, b < n \). Thus \(ab = n \in (n) \), but \(a \notin (n) \) and \(b \notin (n) \) (since \(n \) divides neither \(a \) nor \(b \)).

2. By Exercise 27 in 6.1, since \((2, 3) = 1, (2) \cap (3) = (6) \). But \((2) \) and \((3) \) are prime ideals, while \((6) \) is not.

3. (a) Suppose first that \(p \) is prime and \(I \) is an ideal of \(\mathbb{Z} \) such that \((p) \subseteq I \subseteq \mathbb{Z} \). If \((p) \neq I \), then there exists \(n \in I - (p) \). Such an \(n \) is not a multiple of \(p \), so, since \(p \) is prime, \((n, p) = 1 \). Therefore, there are integers \(x \) and \(y \) such that \(nx + py = 1 \). But \(n, p \in I \), so \(nx + py \in I \). That is, \(I = \mathbb{Z} \). Therefore, \(I \) is maximal.

Conversely, suppose that \((p) \) is a maximal ideal of \(\mathbb{Z} \). If \(p = ab \), then \((p) \subseteq (a) \subseteq \mathbb{Z} \), so \((a) = (p) \) or \((a) = \mathbb{Z} \). In the first case, \(p/a \) and \(a/p \), so \(a = \pm p \). In the second case, \((a) = \pm 1 \). Thus, in either case, we have a trivial factorization of \(p \), so \(p \) is prime.

Here is the easy way: \(p \) is prime if and only if \(\mathbb{Z}/(p) \cong \mathbb{Z}_p \) is an integral domain, which is true if and only if \(\mathbb{Z}_p \) is finite, \(1/p \) is false if and only if \(\mathbb{Z}_p \) is a field, which is true if and only of \((p) \) is maximal.

(b) Suppose first that \(p(x) \) is prime and \(I \) is an ideal of \(F[x] \) such that \((p(x)) \subseteq I \subseteq F[x] \). If \((p(x)) \neq I \), then there exists \(n(x) \in I - (p(x)) \). Such an \(n(x) \) is not a multiple of \(p(x) \), so, since \(p(x) \) is irreducible, \((n(x), p(x)) = 1 \). Therefore, there are polynomials \(g(x) \) and \(h(x) \) such that \(n(x)g(x) + p(x)h(x) = 1 \). But \(n(x), p(x) \in I \), so \(n(x)g(x) + p(x)h(x) \in I \). That is, \(I = F[x] \). Therefore, \(I \) is maximal.

Conversely, suppose that \((p(x)) \) is a maximal ideal of \(F[x] \). If \(p(x) = a(x)b(x) \), then \((p(x)) \subseteq (a(x)) \subseteq \mathbb{Z} \), so \((a(x)) = (p(x)) \) or \((a(x)) = F[x] \). In the first case, \(p(x)a(x) \) and \(a(x)p(x) \), so \(a(x) \) is an associate of \(p(x) \). In the second case, \((a(x)) = (p(x)) \) is a constant polynomial. Thus, in either case, we have a trivial factorization of \(p(x) \), so \(p(x) \) is prime.

4. If \(R \) is an integral domain and \(ab \in (0) \), then \(ab = 0 \). Thus \(a = 0 \) or \(b = 0 \), so \(a \in (0) \) or \(b \in (0) \). Therefore, \((0) \) is a prime ideal. On the other hand, if \((0) \) is a prime ideal and \(ab \in (0) \), then \(ab \in (0) \), so \(a \in (0) \) or \(b \in (0) \). Thus \(a = 0 \) or \(b = 0 \), so \(R \) is an integral domain.

5. The ideals in \(\mathbb{Z}_6 \) are \((0), (1) = (5), (2) = (4), \) and \((3) \). Of these, \((2) = (4) \) and \((3) \) are maximal.

The ideals in \(\mathbb{Z}_{12} \) are \((0), (1) = (5) = (7) = (11), (2) = (10), (3) = (9), (4) = (8), \) and \((6) \). Of these \((2) = (10) \) and \((3) = (9) \) are maximal.

6. Let \(a \in F, a \neq 0 \). If \((0) \) is maximal, then \((0, a) = F \), so there are elements \(b, c \in F \) such that \(0(b) + a(c) = 1 \). Thus \(ac = 1 \), so \(a \) has an inverse. Since \(a \) was arbitrary, \(F \) is a field. Conversely, if \(F \) is a field, then the only ideals are \((0) \) and \(F \), so \((0) \) is maximal.

11. Define \(\phi \) from \(\mathbb{Z}[x] \) to \(\mathbb{Z} \) by \(\phi(p(x)) = p(1) \). We have seen several times that evaluation is a homomorphism, and this one is surjective. Certainly \(x - 1 \in \ker \phi \). If \(\frac{f(x)}{x - 1} \in \ker \phi \), then \(f(x) = (x - 1)g(x) \) for some \(g(x) \in \mathbb{Z}[x] \) by the Factor Theorem and Theorem 4.22, so \(f(x) \in (x - 1) \). Therefore, \(\ker \phi = (x - 1) \). Thus \(\mathbb{Z}[x]/(x - 1) \cong \mathbb{Z} \). Since \(\mathbb{Z} \) is an integral domain but not a field, \((x - 1) \) is a prime ideal but not a maximal ideal.

13. Define \(\phi \) from \(\mathbb{Z} \times \mathbb{Z} \) to \(\mathbb{Z} \) by \(\phi(m, n) = m \). Then \(\phi \) is a surjective homomorphism and \(\ker \phi = (0) \times \mathbb{Z} \), so \(\mathbb{Z} \times \mathbb{Z}/(0) \cong \mathbb{Z} \). Since \(\mathbb{Z} \) is an integral domain but not a field, \(0 \times \mathbb{Z} \) is a prime ideal but not a maximal ideal. [Note the technique in Exercises 11 and 13 -- this is a way to come up with ideals with certain properties!]

16. \(M \) is clearly an ideal: if \(a, b \in M \), then \(a - b \in M \), and if \(a \in M \) and \(r \in \mathbb{Z} \), then \(ar \in M \). If \(M \subseteq J \subseteq \mathbb{Z} \) but \(J \neq M \), then there is an element \(a \in J - M \). Thus \(a \) is not a multiple of \(4 \), but \(a \) is even, so \(a = 4q + 2 \) for some integer \(q \). Thus \(4q - a = 2 \in J \) since \(4 \in J \), so \(J = 2\mathbb{Z} \). Therefore, \(M \) is maximal.