1. (a) $f(x + y) = 3(x + y) = 3x + 3y = f(x) + f(y)$. Certainly $< 4 \leq \ker f$. If $f(x) = 0$, then $3x = 0$ in \mathbb{Z}_{12}, so $4|x$. Thus $\ker f = < 4 >$. (b) $f(k + 1) = ([k + l]_2, [k + l]_4) = ([k]_2, [k]_4) + ([l]_2, [l]_4) = f(k) + f(l)$, so f is a homomorphism. If $k \in \ker f$, then k is congruent to 0 mod 2 and mod 4, so $4|k$. Conversely, if $4|k$, then $k \in \ker f$. Thus $\ker f = < 4 >$. (c) We have seen several times that this kind of map is operation-preserving. $[k]_8 \in \ker f$ if and only if $[k]_2 = [0]_2$, or $2|k$. Thus $\ker f = \{0, 2, 4, 6\}$ in \mathbb{Z}_8. (d) We must check that $\phi(fg) = \phi(f)\phi(g)$. Notice that since $fg \in S_n$, $\phi(fg)(k) = fg(k)$ if $1 \leq k \leq n$ and $n + 1$ if $k = n + 1$. On the other hand, $\phi(f)\phi(g)(k) = \phi(f)(g(k))$ if $k < n + 1$ and $\phi(f(n + 1))$ if $k = n + 1$. In the first case, since $g(k) < n + 1$, $\phi(f)(g(k)) = f(g(k)) = fg(k)$. In the second case, $\phi(f(n + 1)) = n + 1$. In both cases, we get the same result as we did for $\phi(fg)$, so ϕ is a homomorphism. Its kernel is just $\{e\}$ since no other permutation in S_n fixes every element. (e) $h(x + y) = 2(x + y) = 2x + 2y = h(x) + h(y)$, where the computations are being performed in the appropriate groups. Thus h is a homomorphism. $x \in \ker h$ if and only if $h(x) = [2x]_3 = [0]_3$. Since $3|2x$ if and only if $3|x$, we have $\ker h = < [3]_3 >$.

3. (a) This is Exercise 7 in 7.6. (b) Define $\phi : G \to G^*$ by $\phi(g) = (g, e_H)$. Then ϕ is clearly bijective, and $\phi(gg') = (gg', e_H) = (g, e_H)(g', e_H) = \phi(g)\phi(g')$, so ϕ is also a homomorphism. The proof for H is similar. (c) Define $\phi : G \times H \to H$ by $\phi(g, h) = h$. ϕ is clearly surjective, and $(g, h) \in \ker \phi$ if and only if $h = \phi(g, h) = e$. Thus $\ker \phi = G^*$, so $G \times H/G^* \cong H$. The proof of the other part is similar.

5. (a) The kernels of such homomorphisms have orders dividing 12, so the images must also have orders dividing 12. Since \mathbb{Z}_{12} is cyclic, so are all of its quotient groups and hence, by the First Isomorphism Theorem, its homomorphic images are, too. Thus the images must be cyclic groups of orders dividing 12. Since cyclic groups of a given order are unique up to isomorphism, our list is $\{\}$, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_{10}, and \mathbb{Z}_{20}. (b) Reasoning as in (a), we see that the possible homomorphic images of \mathbb{Z}_{20} are $\{\}$, \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_5, \mathbb{Z}_{10}, and \mathbb{Z}_{20}.

11. Define $\phi : \mathbb{R}^* \to \mathbb{R}^*$ by $\phi(x) = |x|$. We have already seen that this is a surjective homomorphism. $x \in \ker \phi$ if and only if $|x| = \phi(x) = 1$, so $x = \pm 1$. Thus $\ker \phi = \{1, -1\}$, so $\mathbb{R}^*/\{1, -1\} \cong \mathbb{R}^*$.

15. Define $\phi : GL(2, \mathbb{R}) \to \mathbb{R}^*$ by $\phi(M) = \det M$ for each $M \in GL(2, \mathbb{R})$. ϕ is well-defined since members of $GL(2, \mathbb{R})$ have nonzero determinant. It is also a homomorphism since $\det(MN) = \det(M)\det(N)$, and it is surjective since $\det \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix} = a$. $M \in \ker \phi$ if and only if $\det M = 1$, which is precisely how $SL(2, \mathbb{R})$ is defined. Thus, by the First Isomorphism Theorem, $GL(2, \mathbb{R})/SL(2, \mathbb{R}) \cong \mathbb{R}^*$.

23. Following the hint, we see that T is one-to-one since $T(f(x)) = T(g(x)) \Rightarrow Z + xf(x) = Z + xg(x)$, so $x(g(x) - f(x)) \in Z$. This can only happen if $g(x) = f(x)$. It is also surjective: if $f(x) + Z \in \mathbb{Z}[x]/Z$, then $f(x) = xg(x) + n$ for some $g(x) \in \mathbb{Z}[x], n \in Z$ by the division algorithm. Thus $f(x) + Z = xg(x) + Z$, and $T(g(x)) = xg(x) + Z = f(x) + Z$. Finally, T is a homomorphism since $T(f(x) + g(x)) = Z + (f(x) + g(x)) = (Z + f(x)) + (Z + g(x)) = T(f(x)) + T(g(x))$. Therefore $\mathbb{Z}[x] \cong \mathbb{Z}[x]/Z$.

Section 7.8

p. 226: 1, 3, 5, 11, 15, 23