Problem 1:

a. **proposition:** If $G/Z(G)$ is cyclic then G is Abelian.

proof If $G/Z(G)$ is cyclic then there exists some generator $gZ(G)$ such that $<gZ(G)> = G/Z(G)$. Let a, b be arbitrary elements of G. $aZ(G) = (gZ(G))^i = g^iZ(G)$ for some i, and $bZ(G) = (gZ(G))^j = g^jZ(G)$ for some j. $aZ(G) = g^iZ(G)$ implies $a = g^iz_1$ for some $z_1 \in Z(G)$. Similarly, $bZ(G) = g^jZ(G)$ implies $b = g^jz_2$ for some $z_2 \in Z(G)$. Thus $ab = (g^iz_1)(g^jz_2) = g^i(g^jz_1z_2)$ since elements of the center commute with all elements of G. We have $ab = g^ig^jz_1z_2 = g^{i+j}z_1z_2 = g^ig^jz_1z_2 = g^ig^jz_2z_1 = g^jg^iz_1z_2 = ba$. Since a and b were arbitrary, we’ve shown the group operation on G is commutative. Thus G is Abelian.

proposition: If N is a normal subgroup of G and N and G/N are both p-groups, then G is a p-group.

proof Let x be an arbitrary element of G. Consider the coset xN in G/N. If G/N is a p-group, then $|xN| = p^k$ for some $k \in \mathbb{Z}^+$. In other words $(xN)^{p^k} = x^{p^k}N = N$. By properties of cosets, this implies $x^{p^k} \in N$. If N is also a p-group, then every element of N has order equal to some power of p. Thus $|x^{p^k}| = p^j$, i.e. $(x^{p^k})^{p^j} = x^{p^{k+j}} = e$. This implies $|x||p^{k+j}$, which implies $|x| = p^i$ for some positive integer i. Thus, since x was arbitrary, the order of every element in G is equal to p to some power. By definition of p-group, this implies G is a p-group. ■
Problem 2:
a. Use the class equation to prove that if \(|G| = p^k\) for some prime \(p\), then \(|Z(G)| = p^l\) for some integer \(l \geq 1\).

Proof The class equation states \(|G| = |Z(G)| + |cl(a_1)| + \ldots + |cl(a_n)|\) where the \(cl(a_i)\) are distinct conjugacy classes having more than one element (i.e. \(a_i \notin Z(G)\)). The class equation can also be written as \(|G| = |Z(G)| + |G : C(a_1)| + \ldots + |G : C(a_n)|\). For each \(a_i \in G\), \(|G : C(a_i)||G|\) Furthermore, if \(a_i \notin Z(G)\), \(|G : C(a_i)| > 1\). Thus, since \(|G| = p^k\), each term of the form \(|G : C(a_i)|\) in the class equation is divisible by \(p\). \(|G|\) is divisible by \(p\), thus \(p||Z(G)| + |G : C(a_1)| + \ldots + |G : C(a_n)||G|\). Since \(Z(G) \leq G\), we know \(|Z(G)||G|\). Therefore we have \(p||Z(G)||p^k\) which implies \(|Z(G)| = p^l\) for some positive integer \(l \geq 1\). ■

b. **Proposition**: If \(|G| = p^2\) for some prime \(p\), then \(G \cong \mathbb{Z}_{p^2}\) or \(G \cong \mathbb{Z}_p \times \mathbb{Z}_p\).

Proof Consider the normal subgroup \(Z(G)\) of \(G\). By part (a) we know \(|Z(G)| = p\) or \(p^2\). If \(|Z(G)| = p^2\) then \(Z(G) = G\) and \(G\) is Abelian. If \(|Z(G)| = p\), then \(|G/Z(G)| = p\) and is therefore cyclic. By theorem, if \(G/Z(G)\) is cyclic then \(G\) is Abelian. In either case we have \(G\) is Abelian and the result follows from the Fundamental Theorem of Finite Abelian Groups. ■
Problem 3:
Let G be a group of order 99. Prove that there exists a subgroup H of G of order 3 (this part should be a one-sentence proof), and a unique subgroup K of G such that $K/H \cong \mathbb{Z}_3$ and $G/K \cong \mathbb{Z}_{11}$.

proof By Sylow’s first theorem, since $3|\lvert G \rvert$ there exists a subgroup H of order 3. By Sylow’s 2nd theorem we know this H must lie inside a Sylow 3-subgroup of G. By Sylow’s 3rd theorem, we know the number of Sylow 3-subgroups must divide the order of G and be congruent to 1 mod 3. The divisors of G are 1, 3, 9, 11, 33, 99. The only one of these congruent to 1 mod 3 is 1. Thus, there is only 1 Sylow 3-subgroup, call it K. By a corollary to Sylow’s 2nd theorem, this implies the K is normal in G. Furthermore $\lvert K \rvert = p^2$. Thus, we know K is Abelian, and therefore every subgroup of K is normal in K. Thus H is normal in K and we can consider the quotient group K/H. This group will have order $\lvert K \rvert/\lvert H \rvert = 9/3 = 3$, and is thus cyclic and isomorphic to \mathbb{Z}_3. Similarly, since K is normal in G we can consider the quotient group G/K which will have prime order 11 and thus will be isomorphic to \mathbb{Z}_{11}.

\blacksquare
Show your work and make sure your answers are well organized, easy to follow, and properly explained.

Problem EC:
Let G be the group of all $n \times n$ diagonal matrices with ± 1 in the diagonal entries. What is the isomorphism class of G?

solution

$|G| = 2^n$, G is Abelian, and every element of G has order 2. Thus, by the Fundamental Theorem of Finite Abelian Groups $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$.

Signature line: ______________________ ______________________