module NumAlg where

import Prelude hiding (succ, pred) -- we'll re-define succ and pred
import Char (ord, chr) -- ASCII character conversions
import ShortParse -- abbreviated parsing library

-------- bits, binary numerals and "semantics"

data Bit = B0 | B1 deriving (Eq, Ord, Enum, Show)

 bit '0' = B0
 bit '1' = B1
 bit c = error "bad bit literal"

type Binary = [Bit]

bin [] = error "empty binary numeral"
bin cs = map bit cs

semB = fromEnum :: Bit -> Int
semBN = foldl (\v b -> 2 * v + semB (bit b)) 0
abstract algebra for Peano numerals

```haskell
class Peano p where
    zero :: p
    succ, pred :: p -> p
    eqzero :: p -> Bool

    semP s z n | eqzero n = z
                | otherwise = s (semP s z (pred n))
```

Integer instance of Peano

```haskell
instance Peano Integer where
    zero = 0
    succ = (+) 1
    pred = \i -> max (i-1) 0
    eqzero = (==) 0
```

Syntactic natural numbers, and instance of Peano

```haskell
data Nat = Zero | Succ Nat  deriving (Eq, Ord, Show)

instance Peano Nat where
    zero = Zero
    succ = Succ
    eqzero = (==) Zero
    pred (Succ n) = n
    pred Zero = Zero
```
--- Unary notation instance of Peano ---

type Unary = []

instance Peano Unary where
 zero = []
 succ = (():)
 pred = drop 1
 eqzero = (==) []

uni2int = length
int2uni = (\`replicate\` ())

--- Church numeral instance of Peano ---

newtype Church a = Church (forall a. (a -> a) -> (a -> a))

instance Peano (Church a) where
 zero = Church (\f x -> x)
 succ (Church n) = Church (\f x -> f (n f x))
 pred (Church n) = Church (\f x -> n (\g h -> h (g f)) (\u -> x) (\u -> u))
 eqzero (Church n) = n (const False) True

-- could also directly implement +, * in Church numerals and prove equivalent

instance Show (Church a) where
 show (Church n) = "\\f x -> " ++ n ("(f "++ "x" ++ n (\')':) ""

conversion conveniences

peano n = semP succ zero (n :: Integer)
integer n = (peano n) :: Integer
nat n = (peano n) :: Nat
unary n = (peano n) :: Unary
church n = (peano n) :: Church a

chapp n = g where Church g = church n

abstract algebra for semirings, and instances

class SemiRing r where
 none, one :: r
 add, mul :: r -> r -> r

exp n m = semP (mul n) one m

instance Peano p => SemiRing p where
 none = zero
 one = succ zero
 add n m = semP succ n m
 mul n m = semP (add n) zero m

instance SemiRing Unary where
 none = []
 one = [[]]
 add = (++)
 mul = concatMap . const
binary operator algebras, semiring operators

data BopAlg n b = Lit n
 | Bop b (BopAlg n b) (BopAlg n b) deriving (Eq, Ord, Show)

data SROpr = Add | Mul deriving Show

type SRAlg n = BopAlg n SROpr

-- can't get instance Peano p => Peano (SRAlg p): no predecessor!

semiring and operator semantics

semBA f g = s
 where s (Lit n) = f n
 s (Bop b l r) = g b (s l) (s r)

semSRO a m Add = a
semSRO a m Mul = m

eval l a m = semBA l (semSRO a m)

sreval :: (SemiRing a, Peano a) => BopAlg Integer SROpr -> a
sreval = eval peano add mul
--- parsing for BopAlg Integer SROpr ---

\[
\begin{align*}
\text{expr} &= \text{term `chainl1` opr `+' Add} \\
\text{term} &= \text{fact `chainl1` opr `'*' Mul} \\
\text{fact} &= \text{intlit +++ paren expr}
\end{align*}
\]

\[
\begin{align*}
\text{intlit} &= \text{do \{ i <- token int; return (Lit i) \}} \\
\text{opr c f} &= \text{do \{ lit c; return (Bop f) \}}
\end{align*}
\]

\[
\text{paren p} = \text{bracket (lit '(') p (lit ')')}
\]

--- unparsing for BopAlg Integer SROpr ---

\[
\begin{align*}
\text{unparse fix} &= \text{semBA show (fix . semSRO "+", "")} \\
\text{infx o l r} &= \text{par (unwords [l,o,r])} \\
\text{prfx o l r} &= \text{unwords [o,l,r]} \\
\text{pofx o l r} &= \text{unwords [l,r,o]}
\end{align*}
\]

\[
\text{par s} = "(" ++ s ++ ")"
\]

--- testing ---

\[
\begin{align*}
\text{test} &= \text{parse expr " (2 + 1) * 4"}
\end{align*}
\]

\[
\begin{align*}
\text{chu12} &= \text{sreval test :: Church a} \\
\text{nat12} &= \text{sreval test :: Nat} \\
\text{int12} &= \text{sreval test :: Integer} \\
\text{uni12} &= \text{sreval test :: Unary}
\end{align*}
\]

\[
\begin{align*}
\text{intest} &= \text{unparse infx test} \\
\text{prtest} &= \text{unparse prfx test} \\
\text{potest} &= \text{unparse pofx test}
\end{align*}
\]