Complexity Notation

O notation: We say that a function \(f(n) \) has a time complexity \(O(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 \) such that
\[
0 \leq f(n) \leq cg(n) \text{ for } n \geq n_0
\]

Ω notation: We say that a function \(f(n) \) has a time complexity \(Ω(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that
\[
0 \leq cg(n) \leq f(n) \text{ for } n \geq n_0
\]

Θ notation: We say that a function \(f(n) \) has a time complexity \(Θ(g(n)) \) if there exist positive constants \(c_1, c_2, \) and \(n_0 \) such that
\[
0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \text{ for } n \geq n_0
\]

o notation: We say that a function \(f(n) \) has a time complexity \(o(g(n)) \) if for any positive constant \(c \), there exists an \(n_0 > 0 \) such that
\[
0 \leq f(n) < cg(n) \text{ for } n \geq n_0
\]

ω notation: We say that a function \(f(n) \) has a time complexity \(ω(g(n)) \) if for any positive constant \(c \), there exists an \(n_0 > 0 \) such that
\[
0 \leq cg(n) < f(n) \text{ for } n \geq n_0
\]

Limits

Assume that \(f(n) \) is asymptotically non-negative and \(g(n) \) is is asymptotically positive.

- \(\lim_{n \to \infty} f(n)/g(n) = d \) where \(0 < d < \infty \) implies
 \[
 f(n) = O(g(n)), g(n) = O(f(n)), \text{ and } f = Θ(g)
 \]
- \(\lim_{n \to \infty} f(n)/g(n) = \infty \) implies
 \[
 g = O(f), f(n) \neq O(g(n)), f = Ω(g), \text{ and } f \neq Θ(g)
 \]
- \(\lim_{n \to \infty} f(n)/g(n) = 0 \) implies
 \[
 f(n) = O(g(n)), g(n) \neq O(f(n)), \text{ and } f \neq Θ(g)
 \]
- \(f = o(g(n)) \) if and only if \(\lim_{n \to \infty} f(n)/g(n) = 0 \)
- \(f = ω(g(n)) \) if and only if \(\lim_{n \to \infty} f(n)/g(n) = \infty \)
- Recall L’Hopital’s Rule: \(\lim_{n \to \infty} f(n)/g(n) = \lim_{n \to \infty} f'(n)/g'(n) \)
- Warning: Don’t always assume the converse. For example, \(f(n) = O(g(n)) \) does not necessarily imply that \(\lim_{n \to \infty} f(n)/g(n) = d \). Counterexample: let \(f(n) = n \) and \(g(n) = n(1 + \sin n) \). In this case, the limit doesn’t exist.