Review for Final

The exam will be closed notes, closed book, and no calculators. Exam may include true/false, multiple choice, short answer, and short proofs. When doing proofs, you must explain all of your steps.

Exam will cover chapters: 1-4, 7-9, 13, 14, 16, 17

Topics before Midterm:

1. Proof by induction

2. Chapter 1-2: Asymptotic Notation $\Omega(g(n)), \omega(g(n)), O(g(n)), o(g(n))$
 - Know the definitions of $\Omega, \Theta, \omega, O$ and o.
 - Know properties, e.g. transitivity, reflexivity, symmetry
 - Know how to use the definitions in a proof.
 - Know how basic functions such as $f(n) = n, n^k, e^n, \lg n, n!$, etc compare.
 - Know properties of basic functions, e.g. identities of exponentials and logs.

3. Chapter 3: Summations
 - Know how to sum arithmetic series and geometric series
 - Know that the infinite harmonic series blows up. Know the bounds for the finite harmonic series.
 - Know methods for summing: integration, differentiation, shifting terms.
 - Know how to find bounds on sums, e.g. integrating, differentiating, ratio of consecutive terms

4. Chapter 4: Master Equations and Recurrences
 - Substitution method (guess and check with induction)
 - Change of variables
 - Subtraction of a lower order term (e.g. see p. 56)
 - Iteration method and recursion trees.
 - Know how to use the Master Equation to prove bounds on recurrences. Know when the Master Equation will not work.
 - Recurrence with full history
 - How to handle floors and ceilings.
Topics after Midterm:

1. Sorting in general
 - Know the different sorting algorithms: mergesort, insertion sort, heapsort, quicksort
 - Know the different approaches such as divide and conquer, comparison sorts, bucket sorts
 - Know the advantages and disadvantages of the above.
 - How do sorts behave on already sorted lists, reverse ordered lists, etc.
 - What is the $O(g(n))$ bound for the different sorts.

2. Chapter 7: Heapsort and Priority Queues
 - What are the trade-offs of the various ways of implementing a priority queue?
 - What is a heap, how is it stored, what is its height?
 - What is the heap property?
 - What do the methods heapify, build-heap, and heapsort do? What are their complexity?

3. Chapter 8: Quicksort
 - What is the algorithm. How does the partition method work.
 - What is the worst case complexity? Average case?
 - How can quicksort be improved, e.g. median of 3?

4. Chapter 9: Comparison Sorts
 - Understand the proof showing that all comparison sorts are at best $O(n \log n)$

5. Chapter 9: Radix and Bucket Sort
 - How does radix sort work?
 - What is its complexity?

6. Chapter 13: Binary Search Trees
 - Know how the basic operations work (e.g. find, insert, delete, etc) and their complexity.

7. Chapter 14: Red Black Trees
 - What are the properties of a red-black tree?
 - Why are red-black trees used?
8. Chapter 16: Dynamic Programming
 - When is DP effective?
 - Defining the subproblem
 - Determining the recursion
 - memoization
 - Applications: Matrix Chain, LCS, Cheapest path

9. Chapter 17: Greedy Algorithms
 - What is a greedy algorithm?
 - Why use non-optimal greedy algorithms?
 - What is the greedy choice property and how do you prove that a problem satisfies it?
 - What is the optimal substructure and how do you prove that a problem satisfies it?
 - Applications: cheapest path, activity selection, huffman codes, knapsack problem

10. Chapter 5, pp. 86-90: Graph Terminology