1. (Definition of derivative) Use the definition of the derivative f' to find derivative of

(a) $f(x) = \sqrt{x}$ at the given $x = 1$.
(b) $f(x) = x^3$ at $x = 2$.
(c) $f(x) = \frac{1}{\sqrt{x}}$ at the given $x = 1$.
(d) $f(x) = \sqrt{4x+3}$ at any $x > -\frac{3}{4}$.

2. (A meaning of derivative, slope of tangent line) Consider the graph of $f(x) = x^3$. Find the equation of the tangent line at the point $(2, 8)$ on the graph.

3. (Differentiability implies continuity. But, not the converse) Find an example of function which is continuous at $x = 0$, but not differentiable at $x = 0$.

4. (Power rule) Use power rules to find the derivatives f' of

(a) $f(x) = x^3 - x^2 - 5x + 8 - \frac{1}{2x}$.
(b) $f(x) = 3x^5 + \frac{3}{\sqrt{x}}$.
(c) $f(x) = 1 - x^2 + 3x^3\sqrt{x}$.

5. (Derivative, rate of change, velocity) On top of a cliff with height 73.5 m we throw a ball upward. The height of the ball from the ground follows the function $h(t) = 73.5 + 9.8t - 4.9t^2$.

(a) Find the maximum height the ball can reach.
(b) Find the velocity when the ball hits the ground.

6. (Derivative, rate of change, velocity) A particle is moving along a line with displacement function $s(t) = t^3 - 6t^2 + 9t$.

(a) When are the moments the particle change its direction.
(b) Find the total distance the particle traveled in $t = 4$.

7. (Derivative of e^x) Find the derivative f' of the function $f(x) = e^{x+1} - 2x + \ln 2$.

8. (Product rule, Quotient rule) Find the derivatives f' of the following functions.

(a) $f(x) = (x^2 - 3x + 1)(3x + 2)$.
(b) $f(x) = e^x(\sqrt{x} + 5x^3)$.
(c) $f(x) = \frac{x^4 + 2}{\sqrt{x} - 2}$ at $x = 1$.
(d) $f(x) = \frac{e^x}{\sqrt{x} - 2}$.
9. **(Derivatives of trigonometric functions) Find the derivatives \(f' \) of the following functions.**

 (a) \(f(x) = \sin x + \tan x - \sec x \).

 (b) \(f(x) = \sec x \tan x \) at \(x = \frac{\pi}{3} \).

 (c) \(f(x) = xe^x \sin x \).

 (d) \(f(x) = \frac{\tan x - 1}{\sec x} \) at \(x = \frac{\pi}{3} \).

10. **(An important limit) Taking \(f(x) = \sin x \), we observed**

 \[
 1 = \cos 0 = f'(0) = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \lim_{x \to 0} \frac{\sin x}{x}.
 \]

 Use above identity to find the limit of

 \[
 \lim_{x \to 0} \frac{\sin(4x)}{3x}.
 \]

11. **(Chain rule) Find the derivatives \(f' \) of the following functions.**

 (a) \(f(x) = (3x^3 - 2x^2 + 5)^{31} \).

 (b) \(f(x) = \sqrt{1 - x^2} \).

 (c) \(f(x) = \sin(x^3) \).

 (d) \(f(x) = \sec^2 x - \tan^2 x \).

 (e) \(f(x) = (\sin(\tan x))^3 \).

 (f) \(f(x) = e^{\cos x} \).

 (g) \(f(x) = 2^{-x^2} \).

 (h) \(f(x) = x \sin \left(\frac{1}{x}\right) \) for \(x > 0 \).

12. **(Implicit differentiation) Consider the graph of \(\sqrt{x} + \sqrt{y} = 1 \) in the \(xy \)-plane. Find the equation of the tangent line at the point \((\frac{1}{4}, \frac{1}{4})\) on the graph.**

13. **(Implicit differentiation) Find the equation of the tangent line to \(x^3 + y^3 = 4xy \) at the point \((2, 2)\).**

14. **(Implicit differentiation) Find the equation of the tangent line to \(2(x^2 + y^2)^2 = 25(x^2 - y^2) \) at the point \((3, 1)\).**

15. **(Shapes of the inverse trigonometric functions) Sketch the graph of inverse trigonometric functions \(y = \sin^{-1} x \), \(y = \cos^{-1} x \), \(y = \tan^{-1} x \). What are the domains and ranges.**

16. **(Derivatives of inverse trigonometric functions) Find the derivatives \(f' \) of the following functions.**

 (a) \(f(x) = x \arctan \sqrt{x} \).

 (b) \(f(x) = \sin^{-1}(x^3) \).
Math 141, Test 2, practice problems

(Answer keys)

1. (a) \(f'(1) = \frac{1}{2} \) (b) \(f'(2) = 12 \) (c) \(f'(1) = -2 \) (d) \(f'(x) = \frac{2}{\sqrt{4x+1}} \)

2. \(y = 12x - 16 \)

3. \(f(x) = |x| \)

4. (a) \(f'(x) = 3x^2 - 2x - 5 + \frac{5}{x^2} \) (b) \(f'(x) = 15x^4 - \frac{1}{x^3} \) (c) \(f'(x) = -2x + \frac{21}{2}x^{5/2} \)

5. (a) 78.4 m (b) -39.2 m/s

6. (a) \(t = 1 \), \(t = 3 \) (b) 12

7. \(f'(x) = e^{x+1} - 2 \)

8. (a) \(f'(x) = 9x^2 - 14x - 3 \) (b) \(f'(x) = e^x(\sqrt{x} + 5x^3 + \frac{1}{2}\sqrt{x} + 15x^2) \) (c) \(f'(x) = \frac{e^{x(4-x)}}{(3-x)^2} \)

9. (a) \(f'(x) = \cos x + \sec^2x - \sec x \tan x \) (b) \(f'(\frac{x}{3}) = 14 \)

(c) \(f'(x) = e^x(\sin x + x \sin x + x \cos x) \) (d) \(f'(\frac{x}{3}) = \frac{1-e^x}{2} \)

10. \(\frac{4}{x} \)

11. (a) \(f'(x) = 331(3x^3 - 2x^2 + 5)^{330}(9x^2 - 4x) \) (b) \(f'(x) = \frac{x}{\sqrt{4-x^2}} \) (c) \(f'(x) = 3x^2 \cos(x^3) \)

(d) \(f'(x) = 0 \) (e) \(f'(x) = 3(\sin(tan x))^2 \cos(tan x) \sec^2 x \) (f) \(f'(x) = -\sin x e^{\cos x} \)

(g) \(f'(x) = -2x^2 - x^2 \) (h) \(f'(x) = \sin \left(\frac{1}{x}\right) - \frac{1}{x} \cos \left(\frac{1}{x}\right) \)

12. \(y = -x + \frac{1}{2} \)

13. \(y = -x + 4 \)

14. \(y = -\frac{9}{11}x + \frac{40}{11} \)

15. Lecture note

16. (a) \(f'(x) = \arctan \left(\sqrt{\frac{x}{2(1+x)}}\right) \) (b) \(f'(x) = \frac{3x^2}{\sqrt{1-x^3}} \)