The Game of Cops and Robbers on Graphs

Marla Williams
The Game

- Cops and Robbers is a game played on a reflexive graph (the vertices each have at least one loop). There are two players: a set of cops C, and a single robber R.
- The cops and robber occupy vertices.
- The cops go first in round 0.
- When a player moves in a round, they must move to a neighboring vertex. The loops allow a player to stay on the same vertex.
- Any subset of C may move in a given round.
Winning the Game

- The cops win if after some finite number of rounds, one of them can occupy the same vertex as the robber. This is called a capture.
- The robber wins if he can evade capture indefinitely.
- The minimum number of cops required to win in a graph G is called the cop number of the graph G, denoted $c(G)$. If $c(G) = k$, we say G is k-cop-win. When $k = 1$, we say G is cop-win.
History

- The game was first considered in 1978 by Quilliot, a doctoral student at the University of Paris.
- In 1983, Nowakowski and Winkler wrote a paper independent from Quilliot's research.
- In 1984, Aigner and Fromme were the first to consider the game with multiple cops, introducing the idea of the cop number.
- Since then, several variations of the game have been introduced.
Lower bounds

1. For $n > 0$, $c(P_n) = c(W_n) = c(K_n) = 1$.
2. For $n \geq 4$, $c(C_n) = 2$.
3. $c(T) = 1$ if T is a tree.

Proof: Place the cop on an arbitrary vertex of T. On each subsequent round move the cop directly toward the robber along the unique path between them. Eventually the robber will occupy a leaf since T is a finite tree. He will be captured soon after.
Theorem: $c(G) \leq \gamma(G)$, where γ is the domination number of G.

Proof: Let G be a graph with domination number γ, and find a minimum dominating set X of G.

In round 0, place a cop on each vertex of X. Since X is dominating, then every vertex of G is in X or adjacent to some vertex of X. So the cops win in round 0 or 1.
Corollary: $c(\text{Pete}) \leq \gamma(\text{Pete}) = 3$
Theorem (Aigner and Fromme, 1984)

If G has girth at least 5, then $c(G) \geq \delta(G)$.

Proof: Let G have girth 5 with $\delta(G) = d$, and suppose $d-1$ cops are playing.
Let C be the set of vertices in G occupied by cops, and suppose by way of contradiction that C is a dominating set.
Let u be a vertex outside of C. Then $N(u) = X \cup Y$, where $X \subset C$ and $Y \subset V(G) - C$.
Note X and Y partition $N(u)$, so $|X| + |Y| \geq d$.
Theorem (Aigner and Fromme, 1984)

Recall C is a dominating set, so each vertex in Y is adjacent to some vertex in C. Since G has girth 5, then for all \(y \in Y, x \in X \), y is nonadjacent to x. And no two vertices of Y are adjacent to the same vertex in C. So each vertex of Y is adjacent to a unique vertex of \(C \setminus X \).

Then \(d - 1 = |C| \geq |X| + |Y| \geq d \), a contradiction.
Theorem (Aigner and Fromme, 1984)

So C is not a dominating set, hence there is some vertex adjacent to u which is not adjacent to any vertex in C, and the robber may move there in round 0.

Suppose in round $t \geq 0$, that the robber occupies some vertex u_t such that no vertex adjacent to u_t is in C.

By induction, suppose such a vertex exists for $t-1$.
Theorem (Aigner and Fromme, 1984)

So at time t, the robber is on a vertex u_{t-1} nonadjacent to all vertices in C. The girth of G is 5, so each cop is adjacent to at most one neighbor of u_{t-1}. And $d(u_{t-1}) \geq d > |C|$, so the robber may move somewhere not adjacent to any cop. This may continue indefinitely, and therefore $c(G) \geq d = \delta(G)$.

Corollary: $c(\text{Pete}) \geq 3$, hence $c(\text{Pete}) = 3$.

Recall, for some functions f and g with fixed domain,

$f = O(g)$ if there exist positive constants a, c such that $f(n) \geq cg(n)$ for all $n \geq a$.

Also, $f = o(g)$ if $\lim_{x \to \infty} |f(x)/g(x)| = 0$.

So if $f = o(1)$, then $\lim_{x \to \infty} |f(x)| = 0$.
Upper bounds

● Currently the best known upper bound is

\[c(G) = O \left(\frac{n}{2^{(1-o(1))} \sqrt{\log_2 n}} \right). \]

● This was proved by Lu and Peng in 2011.

● Meyniel's Conjecture from 1985 states

\[c(n) = O(n^{1/2}) \]

● This is one of the biggest open problems on the cop number.
Retracts

- Let $H = G - v$ for some vertex v in G.
- H is a retract of G if there is a homomorphism f from G to H such that $f(x) = x$ for all $x \in V(H)$. Recall that a homomorphism preserves edges, i.e. if $xy \in E(G)$ then $f(x)f(y) \in E(H)$.
- If H is a retract of G, then $c(H) \leq c(G)$.

Proof: Let $c(G) = k$ for some k. We will play two games, one in G and one in H such that when C moves from vertex u to v in G, then $f(C)$ moves from $f(u)$ to $f(v)$ in H.
Retracts

Let the cops play in G with R restricted to H. G is k-cop-win, so at some point the cops will be about to win in G. Then R and each of its neighbors in H (and its neighbors in G - H = v) are adjacent to some cop.

Under the retraction, the edge RC becomes Rf(C), and vC becomes vf(C). So $N[R] \subseteq N[f(C)]$ in H, and the robber loses in H in the next round. So $c(H) \leq k$.

Corollary: A retract of a cop-win graph is cop-win
Corners

A **corner** is a vertex \(u \) in \(G \) such that for some vertex \(v \) in \(G \), \(N[u] \subseteq N[v] \).

Lemma: If \(G \) is a cop-win graph, then \(G \) contains at least one corner.

Proof: Consider the next to last move of the robber in a cop-win graph \(G \). The robber can move anywhere in \(N[R] \), but the cop gets him on the next round. So \(C \leftrightarrow N[R] \), hence \(N[R] \subseteq N[C] \).

Lemma: \(G-u \) is a retract of \(G \).
Theorem

In a cop-win graph G with $n \geq 5$ vertices, the cop can capture the robber in at most $n-3$ rounds.

Proof: base case: $n=5$. Trust me, it works.

induction step: By induction, suppose the theorem holds for some $n \geq 5$, and let G be a cop-win graph on $n+1$ vertices.

G contains a corner u dominated by some vertex v ($N[u] \subseteq N[v]$). So $G-u$ is a retract of G, hence $G-u$ is cop-win on n vertices.
Theorem

By induction, the cop can win on G-u in at most n-3 rounds.
The cop plays her winning strategy in G-u and captures the shadow of R.
So if R is on u, C plays as if R is on v.
After n-3 rounds, either the robber has been captured, or R is on u and C is on v.
So the robber is caught in at most (n+1)-3 moves in G.
If k is fixed, then determining if $c(G) \leq k$ can be done in polynomial time.
If k is not fixed, this problem is NP-hard.
It's unknown if the cop number problem is even in NP.
Goldstein and Reingold conjectured in 1995 that the cop number problem is EXPTIME-complete.
Problems in exponential time have running time $O(2^{p(n)})$, where $p(n)$ is a polynomial of n.