Systems of linear equations

Why systems of linear equations are cool:
Solutions to systems of linear equations can be thought of as solutions to matrix equations – solving the vector version of the equation
\[a\mathbf{x} = \mathbf{b}, \]
the equation
\[A\mathbf{x} = \mathbf{b} \] (Sections 3.1, 3.2, 3.3).

Systems of linear equations describe linear objects in \(n \)-dimensional space: lines, planes, hyperplanes, etc. – in general called subspaces of \(\mathbb{R}^n \) (Sections 3.4 and 3.5).

Solutions to systems of linear equations can be thought of as inverse images of matrix functions:
\[A\mathbf{x} = \mathbf{b} \text{ asks for the set of all input vectors } \mathbf{x} \text{ that yield the output vector } \mathbf{b} \] (Sections 6.1–6.4).
Why systems of linear equations are cool:

- Solutions to systems of linear equations can be thought of as solutions to matrix equations – solving the vector version of the equation $ax = b$, the equation $A\vec{x} = \vec{b}$ (Sections 3.1, 3.2, 3.3).
Why systems of linear equations are cool:

- Solutions to systems of linear equations can be thought of as solutions to matrix equations – solving the vector version of the equation $ax = b$, the equation $A\vec{x} = \vec{b}$ (Sections 3.1, 3.2, 3.3).
- Systems of linear equations describe linear objects in n-dimensional space: lines, planes, hyperplanes, etc. – in general called subspaces of \mathbb{R}^n (Sections 3.4 and 3.5).
Why systems of linear equations are cool:

- Solutions to systems of linear equations can be thought of as solutions to matrix equations – solving the vector version of the equation \(ax = b \), the equation \(A\vec{x} = \vec{b} \) (Sections 3.1, 3.2, 3.3).
- Systems of linear equations describe linear objects in \(n \)-dimensional space: lines, planes, hyperplanes, etc. – in general called subspaces of \(\mathbb{R}^n \) (Sections 3.4 and 3.5).
- Solutions to systems of linear equations can be thought of as inverse images of matrix functions: \(A\vec{x} = \vec{b} \) asks for the set of all input vectors \(\vec{x} \) that yield the output vector \(\vec{b} \) (Sections 6.1–6.4).
A **system of linear equations** is a set of equations of the form

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_1 \\
 & \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_1.
\end{align*}
\]

This is called a system of \(m \) equations with \(n \) **unknowns**.
A system of linear equations is a set of equations of the form

\[\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_1 \\
 &\vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_1.
\end{align*}\]

This is called a system of \(m \) equations with \(n \) unknowns.

We write the system compactly using an augmented matrix:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
 a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn} & b_m
\end{bmatrix}
\]
Elementary row operations on an augmented matrix:

- Multiply a row by a nonzero scalar.
Elementary row operations on an augmented matrix:

- Multiply a row by a nonzero scalar.
- Swap two rows.
Elementary row operations on an augmented matrix:

- Multiply a row by a nonzero scalar.
- Swap two rows.
- Add a multiple of one row to another.
A matrix is in **reduced row echelon form** if it satisfies the following properties:

1. Rows consisting of all zeros appear at the bottom of the matrix.
A matrix is in **reduced row echelon form** if it satisfies the following properties:

1. Rows consisting of all zeros appear at the bottom of the matrix.
2. The first nonzero entry in each row with any nonzero entries is 1, called the *leading* 1 in that row.
A matrix is in **reduced row echelon form** if it satisfies the following properties:

1. Rows consisting of all zeros appear at the bottom of the matrix.
2. The first nonzero entry in each row with any nonzero entries is 1, called the *leading* 1 in that row.
3. If a column contains a leading 1, then all other entries in that column are zero.
A matrix is in **reduced row echelon form** if it satisfies the following properties:

1. Rows consisting of all zeros appear at the bottom of the matrix.
2. The first nonzero entry in each row with any nonzero entries is 1, called the *leading* 1 in that row.
3. If a column contains a leading 1, then all other entries in that column are zero.
4. Each leading 1 is further to the right than any above it.
A matrix is in **reduced row echelon form** if it satisfies the following properties:

1. Rows consisting of all zeros appear at the bottom of the matrix.
2. The first nonzero entry in each row with any nonzero entries is 1, called the *leading* 1 in that row.
3. If a column contains a leading 1, then all other entries in that column are zero.
4. Each leading 1 is further to the right than any above it.

The location in the matrix corresponding to a leading 1 is called a *pivot position*, and the column it’s in is a *pivot column*.

The variables corresponding to the leading 1’s are called *leading variables*, and the others are *free variables*.
A matrix is in **reduced row echelon form** if it satisfies the following properties:

1. Rows consisting of all zeros appear at the bottom of the matrix.
2. The first nonzero entry in each row with any nonzero entries is 1, called the *leading* 1 in that row.
3. If a column contains a leading 1, then all other entries in that column are zero.
4. Each leading 1 is further to the right than any above it.

The location in the matrix corresponding to a leading 1 is called a *pivot position*, and the column it’s in is a *pivot column*.

The variables corresponding to the leading 1’s are called *leading variables*, and the others are *free variables*.

If we perform a series of row operations to get matrix A into the matrix U in reduced row echelon form, then we say U is the **reduced row echelon form** of A.
A matrix is in **reduced row echelon form** if it satisfies the following properties:

1. Rows consisting of all zeros appear at the bottom of the matrix.
2. The first nonzero entry in each row with any nonzero entries is 1, called the *leading* 1 in that row.
3. If a column contains a leading 1, then all other entries in that column are zero.
4. Each leading 1 is further to the right than any above it.

The location in the matrix corresponding to a leading 1 is called a **pivot position**, and the column it’s in is a **pivot column**.

The variables corresponding to the leading 1’s are called **leading variables**, and the others are **free variables**.

If we perform a series of row operations to get matrix A into the matrix U in reduced row echelon form, then we say U is the **reduced row echelon form** of A.

Theorem

Every matrix has exactly one reduced echelon form.
A linear system is **homogenous** if all the b’s are 0.

Questions

1. How many solutions could a linear system have?

Theorem

Every linear system has either 0, 1, or ∞ solutions.

The **rank** of a matrix A is the number of leading 1’s / pivot columns / leading variables in its reduced row echelon form.

Suppose a linear system has m equations, n unknowns, and rank r. How many solutions could the system have if:

2. $r = m$?

3. $r = n$?

4. $r < n$?

5. $r = m = n$?

6. $m < n$?

7. What if the linear system is homogeneous?
A linear system is **homogenous** if all the b's are 0.

A linear system is **consistent** if it has at least one solution.
A linear system is *homogenous* if all the b’s are 0.
A linear system is *consistent* if it has at least one solution.

Questions

1. How many solutions could a linear system have?
A linear system is *homogenous* if all the b’s are 0.
A linear system is *consistent* if it has at least one solution.

Questions

1. How many solutions could a linear system have?

Theorem

Every linear system has either 0, 1, or ∞ solutions.
A linear system is **homogenous** if all the b’s are 0.

A linear system is **consistent** if it has at least one solution.

Questions

1. How many solutions could a linear system have?

Theorem

Every linear system has either 0, 1, or ∞ solutions.

The **rank** of a matrix A is the number of leading 1’s / pivot columns / leading variables in its reduced row echelon form.
A linear system is **homogeneous** if all the b’s are 0.
A linear system is **consistent** if it has at least one solution.

Questions

1. How many solutions could a linear system have?

Theorem

Every linear system has either 0, 1, or ∞ solutions.

The **rank** of a matrix A is the number of leading 1’s / pivot columns / leading variables in its reduced row echelon form. Suppose a linear system has m equations, n unknowns, and rank r. How many solutions could the system have if:

2. $r = m$?
3. $r = n$?
4. $r < n$?
5. $r = m = n$?
6. $m < n$?
A linear system is **homogenous** if all the \(b \)'s are 0.
A linear system is **consistent** if it has at least one solution.

Questions

1. How many solutions could a linear system have?

Theorem

Every linear system has either 0, 1, or \(\infty \) solutions.

The **rank** of a matrix \(A \) is the number of leading 1’s / pivot columns / leading variables in its reduced row echelon form. Suppose a linear system has \(m \) equations, \(n \) unknowns, and rank \(r \). How many solutions could the system have if:

2. \(r = m \)?
3. \(r = n \)?
4. \(r < n \)?
5. \(r = m = n \)?
6. \(m < n \)?
7. What if the linear system is homogeneous?