1. Find two matrices A and B such that $\text{Col}(A) = \text{Col}(B)$, and $\text{Nul}(A) = \text{Nul}(B)$, but $A \neq B$.

2. (Section 4.5 #32) Prove that if V and W are isomorphic vector spaces, then $\dim(V) = \dim(W)$.

3. Suppose that H is a set of points in \mathbb{R}^n. Prove that the following three statements are equivalent.

 (a) H is a subspace of \mathbb{R}^n.
 (b) $H = \text{Col}(A)$ for some matrix A.
 (c) $H = \text{Nul}(B)$ for some matrix B.