1. Suppose $P(\lambda)$ is the characteristic polynomial of the $n \times n$ matrix A.

 (a) Show that P has degree n.

 (b) Show that the coefficient of λ^n in P is 1.

 (c) The trace of a matrix A is the sum of its diagonal entries. Show that the coefficient of λ^{n-1} in P is $-\text{trace}(A)$.

 (d) Show that the constant term of P is $(-1)^n \det(A)$.

2. Suppose that $T(\vec{x}) = A\vec{x}$ is a linear transformation from \mathbb{R}^n to \mathbb{R}^n. A subspace V of \mathbb{R}^n is said to be invariant under the linear transformation T if whenever \vec{x} is in V, $T(\vec{x})$ is also in V.

 (a) Prove that a one-dimensional subspace V of \mathbb{R}^n is invariant under T if and only if V is contained in an eigenspace of the matrix A.

 (b) Find an example of a matrix A and a proper subspace V of \mathbb{R}^n such that V is invariant under T, but V is not contained in an eigenspace of A. (Hint: What must T do to V geometrically?)