1. A lower estimate is $0(3) + 10(3) + 25(3) + 45(3) = 240$ feet. An upper estimate is $10(3) + 25(3) + 45(3) + 75(3) = 465$ feet. The average of these is $(240 + 465)/2 = 352.5$ feet.

2. (a) A lower estimate is $45(2)+16(2)+0(2) = 122$ feet. An upper estimate is $88(2)+45(2)+16(2) = 298$ feet.

 (b) See below.

 ![Graph](image)

3. (a) A lower estimate is $37(10) + 41(10) + 77(10) + 77(10) = 2320$ million people, or 2.32 billion people. An upper estimate is $41(10) + 78(10) + 78(10) + 86(10) = 2830$ million people, or 2.83 billion people. The average of these is $(2.32 + 2.32)/2 = 2.83$ billion people.

 (b) The true change is $5295 - 2555 = 2740$, so our estimate was a little low – but not very!

4. They say it “increases steadily”, so I will assume that that means a linear growth. Thus, at 6 AM the flow rate is 100 m³/hr, at 7 AM it is 160, at 8 AM it is 220, and at 9 AM it is 280. A lower estimate is therefore $100(1) + 160(1) + 220(1) = 480$ m³. An upper estimate is $160(1) + 220(1) + 280(1) = 660$ m³. The average of these is 570 m³. An alternative method would be to find the area of the trapezoid the curve defines.

7. The grid will help us determine the area under the curve, which represents the distance travelled. It looks to me like the area is about 140, so I estimate that the object travelled 140 m.

11. (a) Car A attains the maximum velocity since its velocity graph has the higher maximum.

 (b) Car A also stops first; its velocity returns to 0 first.

 (c) Car B travels much farther; the area under its velocity curve is much greater than the area under the velocity curve for Car A.

14. I will compute upper and lower estimates with one-second intervals. This is an increasing function, so upper estimates will be from the right endpoint, and lower estimates will be from the left endpoint.

 Lower: $(0^2 + 1)(1) + (1^2 + 1)(1) + (2^2 + 1)(1) + (3^2 + 1)(1) + (4^2 + 1)(1) = 35$ meters.

 Upper: $(1^2 + 1)(1) + (2^2 + 1)(1) + (3^2 + 1)(1) + (4^2 + 1)(1) + (5^2 + 1)(1) = 60$ meters.

 The average is $(35 + 60)/2 = 47.5$ meters.

15. (a) Lower estimate: $80(2) + 50(2) + 25(2) + 10(2) + 0(2) = 330$ feet.

 Upper estimate: $100(2) + 80(2) + 50(2) + 25(2) + 10(2) = 530$ feet. The average is 430 feet.

 (b) The data is inconclusive; the lower estimate is below the 400 feet, and the upper is above. The skunk may also have moved!