Solutions to Homework Assignment 3

1. (a) \(y = f(x) + 3 \)
 (d) \(y = f(x) + 3 \)
 (g) \(y = 3f(x) \)
(b) \(y = f(x) - 3 \)
 (e) \(y = -f(x) \)
 (h) \(y = \frac{1}{3}f(x) \)
(c) \(y = f(x) - 3 \)
 (f) \(y = f(-x) \)

6. We need to shift right 2 units and stretch vertically by a factor of 2: \(y = 2\sqrt{3(x - 2)} - (x - 2)^2 \).

7. We need to reflect across the x-axis, shift down 1 unit, and shift 4 units: \(y = -\sqrt{3(x + 4)} - (x + 4)^2 - 1 \).

22. The tangent graph is shifted right by \(\pi/4 \) and compressed vertically by a factor of 4.

23. All portions of the graph of \(\sin x \) that lie below the x-axis are reflected above the x-axis; other portions are unchanged.

![Graphs of functions](image)

29. \((f + g)(x) = f(x) + g(x) = (x^3 + 2x^2) + (3x^2 - 1) = x^3 + 5x^2 - 1\), \((f - g)(x) = f(x) - g(x) = (x^3 + 2x^2) - (3x^2 - 1) = x^3 - x^2 + 1\), \((fg)(x) = f(x)g(x) = (x^3 + 2x^2)(3x^2 - 1)\), and \(\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x^3 + 2x^2}{3x^2 - 1}\).

\(f + g, f - g, \) and \(fg \) all have domain \(\mathbb{R} \). \(\frac{f}{g} \) has domain \(\{x \in \mathbb{R} | x \neq \pm 1/\sqrt{3}\} \).

35. \((f \circ g)(x) = f(g(x)) = f\left(\frac{x + 1}{x + 2}\right) = \left(\frac{x + 1}{x + 2}\right) + \left(\frac{1}{\frac{x + 1}{x + 2}}\right) = \frac{x + 1}{x + 2} + \frac{x + 2}{x + 1}\).

\((g \circ f)(x) = g\left(\frac{1}{x}\right) = \frac{x + 1}{x + \frac{1}{x} + 2} = \frac{x^2 + x + 1}{x^2 + 2x + 1}\).

You can get the other two!

37. \((f \circ g \circ h)(x) = f(g(h(x))) = f(g(x - 1)) = f(2(x - 1)) = 2(x - 1) + 1 = 2x - 1\).

41. The “inside” function is \(g \), so \(g(x) = x^2 + 1 \). The outside function is \(f(x) = x^{10} \). Thus \(F(x) = (f \circ g)(x) = f(g(x)) = f(x^2 + 1) = (x^2 + 1)^{10} \), as desired.

49. The innermost function, \(h \), is \(h(x) = \sqrt{x} \). The intermediate function is \(g(x) = \sec x \). The outermost function is \(f(x) = x^4 \). We have \(H(x) = (f \circ g \circ h)(x) = f(g(h(x))) = f(g(\sqrt{x})) = f(\sec(\sqrt{x})) = (\sec(\sqrt{x}))^4 = \sec^4(\sqrt{x}) \), as desired.

51. (a) \(g(2) \) is 5, so \(f(g(2)) = f(5) = 4 \).
 (b) \(f(0) = 0 \), so \(g(f(0)) = g(0) = 3 \).
 (c) \((f \circ g)(0) = f(g(0)) = f(3) = 0 \).
 (d) \((g \circ f)(6) = g(f(6)) = g(6) \), which is undefined.
 (e) \((g \circ g)(-2) = g(g(-2)) = g(1) = 4 \).
(f) \((f \circ f)(4) = f(f(4)) = f(2) = -2\).

56. (a) The horizontal distance is just \(d = 350t\).

(b) The distance \(s\) is the hypotenuse of a right triangle with short leg 1 mile and long leg \(d\) miles. Thus, \(s = \sqrt{d^2 + 1}\).

(c) We have \(s(d(t)) = s(350t) = \sqrt{350^2t^2 + 1}\).