Throughout, all variables represent integers unless otherwise specified.

For some of the problems on this assignment, it is helpful to observe that \(d \mid n \) if and only if \((n/d)\mid n \).

1. Solve each congruence.

 (a) \(x^2 + 7x + 10 \equiv 0 \pmod{11} \).

 \textbf{Solution:} \(x^2 + 7x + 10 = (x + 2)(x + 5) \), so \(x = -2, -5 \) are solutions. These are 9, 6 \(\pmod{11} \).

 (b) \(3x^2 + 9x + 7 \equiv 0 \pmod{13} \)

 \textbf{Solution:}

 \[3x^2 + 9x + 7 \equiv 0 \pmod{13} \]

 \[9x^2 + 27x + 21 \equiv 0 \pmod{13} \]

 \[36x^2 + 108x + 84 \equiv 0 \pmod{13} \]

 \[(6x + 9)^2 + 3 \equiv 0 \pmod{13} \]

 \[(6x + 9)^2 \equiv 10 \pmod{13} \]

 \[6x + 9 \equiv \pm 6 \pmod{13} \].

 Now 6x \equiv -3 \pmod{13} or 6x \equiv -15 \pmod{13}. 6x \equiv 10 \pmod{13} or 6x \equiv 11 \pmod{13}. Thus x \equiv 6 \pmod{13} or x \equiv 4 \pmod{13}.

 (c) \textbf{TURN IN:} \(5x^2 + 3x + 4 \equiv 0 \pmod{37} \). [Don’t just guess and check – show me a method!]

2. Prove that \(6x^2 + 5x + 1 \equiv 0 \pmod{p} \) has a solution for all primes \(p \) but has no solutions in the integers.

\textbf{Solution:}

Since \(6x^2 + 5x + 1 = (3x+1)(2x+1) \), we need only solve a linear congruence \((3x+1 \equiv 0 \pmod{p} \) or \(2x + 1 \equiv 0 \pmod{p} \)) to solve the quadratic congruence. These both have solutions for all primes \(p \neq 2, 3 \), and the original congruence is just \(5x + 1 \equiv 0 \pmod{p} \) for \(p = 2, 3 \). On the other hand, the real solutions are \(x = -\frac{1}{2} \) and \(x = -\frac{1}{3} \), neither of which is an integer.

3. (a) Show that 7 and 18 are solutions of \(x^2 \equiv -1 \pmod{5^2} \). [There is a theorem that tells us how many solutions there are; in this case, there are only these 2.]

\textbf{Solution:} Just check.

(b) Use (a) to find solutions of \(x^2 \equiv -1 \pmod{5^3} \).

\textbf{Solution:} Let \(x_0 = 7 \). We need to find \(q \) such that \(7^2 - 5^2q = -1 \). This is satisfied for \(q = 2 \). Now we require \(y \) such that \(2 \cdot 7y \equiv -2 \pmod{5} \); \(y = 2 \) is a solution. Let \(x_1 = 7 + 2(5^2) = 57 \). Verify that this is a solution.

4. Solve each congruence.
(a) \(x^2 \equiv 7 \pmod{3^3} \)

Solution:
Since \(4^2 \equiv 7 \pmod{9} \), we have a solution \(x_0 = 4 \pmod{3} \). Write \(4^2 - 3^2(1) = 7 \) and then solve \(2(4)y = -1 \pmod{3} \) for \(y \). We have \(y = 1 \) as a solution. Now let \(x_1 = 4 + 1(3^2) = 13 \). Verify that \(x_1 = 13 \) is a solution.

(b) **TURN IN:** \(x^2 \equiv 14 \pmod{5^3} \)

(c) \(x^2 \equiv 2 \pmod{7^3} \)

Solution: Notice \(x_0 = 10 \) is a solution mod \(7^2 \): \(10^2 = 100 \equiv 2 \pmod{7^2} \). Write \(10^2 - 7^2(2) = 2 \) and then solve \(2(10)y \equiv -2 \pmod{7} \). We find \(y = 2 \), giving \(x_1 = 10 + 2(7^2) = 108 \). Verify that this is a solution.

(d) \(x^2 + 5x + 6 \equiv 0 \pmod{5^3} \)

Solution: \(x^2 + 5x + 6 = (x + 2)(x + 3) \), so \(x = -2, x = -3 \) are solutions.

(e) \(x^2 + x + 3 \equiv 0 \pmod{3^3} \)

Solution: Recall that completing the square to solve \(ax^2 + bx + c \equiv 0 \pmod{q} \) gives us \((2ax + b)^2 \equiv b^2 - 4ac \pmod{q} \). In our case, this means \((2x + 1)^2 \equiv -11 \equiv 16 \pmod{3^3} \). Accordingly, we will first solve \(y^2 \equiv 16 \pmod{3^3} \). We see that \(y = 4 \) is a solution, so we need to solve \(2x + 1 \equiv 4 \pmod{27} \), which gives \(2x \equiv 3 \pmod{27} \). Thus \(14(2x) \equiv 14(3) \pmod{27} \), so \(x \equiv 15 \). The other solution comes from \(y = -4 \), or \(2x + 1 \equiv -4 \pmod{27} \), giving \(x = 11 \).

5. Compute each valuation.

(a) \(\left[\frac{22}{7} \right]_7 \)

(b) \(\left[\frac{355}{113} \right]_{11} \)

(c) \(\left[\frac{243}{85} \right]_3 \)

Solutions: \(\left[\frac{22}{7} \right]_7 = 7^1 \), \(\left[\frac{355}{113} \right]_{11} = 1 \), and \(\left[\frac{243}{85} \right]_3 = 1 \).

6. **TURN IN:** Consider the sequence 1, 2, 4, 8, 16, \ldots, \(2^n \), \ldots. What are the 2-adic valuations of these numbers? What does that suggest about the sequence in the 2-adic valuation?